
Pinball Loss: Quantile Regression Visualization

2024-02-11

Introduction to Pinball Loss

The Pinball Loss (also called Quantile Loss) is a loss function used in quantile regression.
Unlike mean absolute error or mean squared error which predict the mean of a distribution,
quantile regression allows us to predict any quantile of the conditional distribution of the
response variable.

Mathematical Definition

The pinball loss function is defined as:

𝐿𝜏(𝑦, ̂𝑦) = {
𝜏(𝑦 − ̂𝑦) if 𝑦 ≥ ̂𝑦
(1 − 𝜏)(𝑦 − ̂𝑦) if 𝑦 < ̂𝑦

where 𝜏 ∈ [0, 1] is the quantile level. This can also be written more compactly as:

𝐿𝜏(𝑦, ̂𝑦) = (𝑦 − ̂𝑦)(𝜏 − 𝟙𝑦< ̂𝑦)

Key Properties

• 𝜏 = 0.5: Median regression (equivalent to absolute deviation)
• 𝜏 < 0.5: Lower quantile regression (penalizes overestimation more)
• 𝜏 > 0.5: Upper quantile regression (penalizes underestimation more)

1

Interactive Visualization

Let’s create an interactive visualization of the pinball loss function:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle

Create figure with subplots
fig, axes = plt.subplots(1, 2, figsize=(14, 5))

Left plot: Loss function shape for different quantiles
y_true = 0 # true value at origin
y_pred = np.linspace(-2, 2, 100)

quantiles = [0.1, 0.25, 0.5, 0.75, 0.9]
colors = plt.cm.viridis(np.linspace(0, 1, len(quantiles)))

ax = axes[0]
for tau, color in zip(quantiles, colors):

loss = np.where(y_true >= y_pred,
tau * (y_true - y_pred),
(1 - tau) * (y_true - y_pred))

ax.plot(y_pred, loss, label=f'� = {tau}', linewidth=2.5, color=color)

ax.set_xlabel('Predicted Value - True Value (ŷ - y)', fontsize=12)
ax.set_ylabel('Loss', fontsize=12)
ax.set_title('Pinball Loss for Different Quantiles', fontsize=13, fontweight='bold')
ax.legend(fontsize=10)
ax.grid(True, alpha=0.3)
ax.axhline(y=0, color='k', linestyle='-', linewidth=0.5)
ax.axvline(x=0, color='k', linestyle='-', linewidth=0.5)

Right plot: Heatmap showing asymmetry
ax = axes[1]
tau_values = np.linspace(0, 1, 50)
errors = np.linspace(-3, 3, 100)
loss_matrix = np.zeros((len(tau_values), len(errors)))

for i, tau in enumerate(tau_values):
for j, error in enumerate(errors):

if error >= 0:
loss_matrix[i, j] = tau * error

2

else:
loss_matrix[i, j] = (1 - tau) * error

im = ax.contourf(errors, tau_values, loss_matrix, levels=20, cmap='RdYlBu_r')
plt.colorbar(im, ax=ax, label='Loss Value')
ax.set_xlabel('Prediction Error (ŷ - y)', fontsize=12)
ax.set_ylabel('Quantile Level (�)', fontsize=12)
ax.set_title('Loss Landscape Across Quantiles', fontsize=13, fontweight='bold')

plt.tight_layout()
plt.show()

print("� Pinball Loss visualization created successfully!")

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Predicted Value - True Value (- y)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Lo
ss

Pinball Loss for Different Quantiles
 = 0.1
 = 0.25
 = 0.5
 = 0.75
 = 0.9

3 2 1 0 1 2 3
Prediction Error (- y)

0.0

0.2

0.4

0.6

0.8

1.0

Qu
an

til
e

Le
ve

l (
)

Loss Landscape Across Quantiles

2.7

1.8

0.9

0.0

0.9

1.8

2.7

Lo
ss

 V
al

ue

� Pinball Loss visualization created successfully!

Practical Example: Quantile Regression

Let’s demonstrate quantile regression on synthetic data:

from scipy.optimize import minimize

Generate synthetic data
np.random.seed(42)
X = np.linspace(0, 10, 100)
True function with heteroscedastic noise
y = 2 * X + 5 + np.random.normal(0, X/2)

3

Define pinball loss for regression
def pinball_loss_regression(params, X, y, tau):

"""Compute pinball loss for linear regression"""
predictions = params[0] * X + params[1]
errors = y - predictions
loss = np.where(errors >= 0,

tau * errors,
(1 - tau) * errors)

return np.mean(loss)

Fit models for different quantiles
quantiles = [0.1, 0.25, 0.5, 0.75, 0.9]
models = {}

for tau in quantiles:
result = minimize(

lambda p: pinball_loss_regression(p, X, y, tau),
x0=[1, 0],
method='BFGS'

)
models[tau] = result.x

Plot results
fig, ax = plt.subplots(figsize=(12, 6))

Scatter plot of data
ax.scatter(X, y, alpha=0.6, s=50, label='Data points', color='gray')

Plot fitted quantile regression lines
X_line = np.linspace(0, 10, 100)
colors = plt.cm.coolwarm(np.linspace(0, 1, len(quantiles)))

for tau, color in zip(quantiles, colors):
slope, intercept = models[tau]
y_line = slope * X_line + intercept
ax.plot(X_line, y_line, label=f'� = {tau} (�-quantile)',

linewidth=2.5, color=color)

ax.set_xlabel('X', fontsize=12)
ax.set_ylabel('y', fontsize=12)
ax.set_title('Quantile Regression: Fitting Different Quantiles',

fontsize=13, fontweight='bold')

4

ax.legend(fontsize=10, loc='upper left')
ax.grid(True, alpha=0.3)

plt.tight_layout()
plt.show()

print("\nQuantile Regression Model Parameters:")
print("-" * 40)
for tau in quantiles:

slope, intercept = models[tau]
print(f"� = {tau:0.2f}: y = {slope:.3f}x + {intercept:.3f}")

0 2 4 6 8 10
X

0

2

4

6

8

y

1e8 Quantile Regression: Fitting Different Quantiles
Data points
 = 0.1 (-quantile)
 = 0.25 (-quantile)
 = 0.5 (-quantile)
 = 0.75 (-quantile)
 = 0.9 (-quantile)

Quantile Regression Model Parameters:
--
� = 0.10: y = 513.000x + 102.400
� = 0.25: y = 88618283.014x + 17723656.403
� = 0.50: y = 88618283.014x + 17723656.403
� = 0.75: y = 57233859.380x + 12991415.525
� = 0.90: y = 83005819.871x + 26345332.109

Applications

Pinball loss is particularly useful in:

5

1. Risk Estimation: Modeling confidence intervals and prediction bounds
2. Demand Forecasting: Predicting different service levels (e.g., 10th percentile for low

demand, 90th for high demand)
3. Financial Modeling: Value at Risk (VaR) estimation
4. Weather Prediction: Probabilistic forecasting
5. Robust Regression: Less sensitive to outliers when using median (� = 0.5)

Comparison with Other Loss Functions

Compare pinball loss with MSE and MAE
y_true = 0
y_pred = np.linspace(-3, 3, 100)

fig, ax = plt.subplots(figsize=(10, 6))

MSE
mse = (y_pred - y_true) ** 2
ax.plot(y_pred, mse, label='MSE', linewidth=2.5, color='red', linestyle='-')

MAE
mae = np.abs(y_pred - y_true)
ax.plot(y_pred, mae, label='MAE', linewidth=2.5, color='blue', linestyle='-')

Pinball loss (�=0.5)
pinball = np.where(y_true >= y_pred,

0.5 * (y_true - y_pred),
0.5 * (y_true - y_pred))

ax.plot(y_pred, np.abs(pinball), label='Pinball (�=0.5)',
linewidth=2.5, color='green', linestyle='-')

Pinball loss (�=0.1)
pinball_01 = np.where(y_true >= y_pred,

0.1 * (y_true - y_pred),
0.9 * (y_true - y_pred))

ax.plot(y_pred, np.abs(pinball_01), label='Pinball (�=0.1)',
linewidth=2.5, color='orange', linestyle='--')

ax.set_xlabel('Prediction Error', fontsize=12)
ax.set_ylabel('Loss Value', fontsize=12)
ax.set_title('Comparison of Different Loss Functions', fontsize=13, fontweight='bold')
ax.legend(fontsize=11)

6

ax.grid(True, alpha=0.3)

plt.tight_layout()
plt.show()

print("Loss function comparison plotted!")

3 2 1 0 1 2 3
Prediction Error

0

2

4

6

8

Lo
ss

 V
al

ue

Comparison of Different Loss Functions
MSE
MAE
Pinball (=0.5)
Pinball (=0.1)

Loss function comparison plotted!

Summary

The Pinball Loss is a powerful and flexible loss function that:

• � Generalizes MAE and other loss functions
• � Allows asymmetric penalization of prediction errors
• � Enables quantile regression for uncertainty estimation
• � Is robust to outliers
• � Has diverse real-world applications

By adjusting the quantile parameter 𝜏, practitioners can fine-tune their models to different
business objectives and risk profiles.

7

	Introduction to Pinball Loss
	Mathematical Definition
	Key Properties

	Interactive Visualization
	Practical Example: Quantile Regression
	Applications
	Comparison with Other Loss Functions
	Summary

