Pinball Loss: Quantile Regression Visualization

2024-02-11

Introduction to Pinball Loss
The Pinball Loss (also called Quantile Loss) is a loss function used in quantile regression.
Unlike mean absolute error or mean squared error which predict the mean of a distribution,

quantile regression allows us to predict any quantile of the conditional distribution of the
response variable.

Mathematical Definition

The pinball loss function is defined as:

~_ JTy—9) ify>y
LT@’y)_{(l—T)(y—@) ity <

where 7 € [0, 1] is the quantile level. This can also be written more compactly as:
LT(y’ @) = (y - @) (T - :ﬂ'y<f/)

Key Properties

o 7 =10.5: Median regression (equivalent to absolute deviation)
o 7 < 0.5: Lower quantile regression (penalizes overestimation more)
e 7> 0.5: Upper quantile regression (penalizes underestimation more)

Interactive Visualization

Let’s create an interactive visualization of the pinball loss function:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle

Create figure with subplots
fig, axes = plt.subplots(l, 2, figsize=(14, 5))

Left plot: Loss function shape for different quantiles
y_true = 0 # true value at origin
y_pred = np.linspace(-2, 2, 100)

quantiles = [0.1, 0.25, 0.5, 0.75, 0.9]
colors = plt.cm.viridis(np.linspace(0, 1, len(quantiles)))

ax = axes[0]
for tau, color in zip(quantiles, colors):
loss = np.where(y_true >= y_pred,
tau * (y_true - y_pred),
(1 - tau) * (y_true - y_pred))
ax.plot(y_pred, loss, label=f' = {tau}', linewidth=2.5, color=color)

ax.set_xlabel ('Predicted Value - True Value (§ - y)', fontsize=12)
ax.set_ylabel('Loss', fontsize=12)

ax.set_title('Pinball Loss for Different Quantiles', fontsize=13, fontweight='bold')
ax.legend(fontsize=10)

ax.grid(True, alpha=0.3)

ax.axhline(y=0, color='k', linestyle='-', linewidth=0.5)

ax.axvline(x=0, color='k', linestyle='-', linewidth=0.5)

Right plot: Heatmap showing asymmetry

ax = axes[1]

tau_values = np.linspace(0, 1, 50)

errors = np.linspace(-3, 3, 100)

loss_matrix = np.zeros((len(tau_values), len(errors)))

for i, tau in enumerate(tau_values):
for j, error in enumerate(errors):
if error >= O:
loss_matrix[i, j] = tau * error

else:
loss_matrix[i, j] = (1 - tau) * error

im = ax.contourf (errors, tau_values, loss_matrix, levels=20, cmap='RdY1Bu_r')
plt.colorbar(im, ax=ax, label='Loss Value')

ax.set_xlabel('Prediction Error (§ - y)', fontsize=12)

ax.set_ylabel('Quantile Level ()', fontsize=12)

ax.set_title('Loss Landscape Across Quantiles', fontsize=13, fontweight='bold')

plt.tight_layout ()
plt.show()

print(" Pinball Loss visualization created successfully!")

Pinball Loss for Different Quantiles 10 Loss Landscape Across Quantiles

— T =0.1 2.7
= 1=025
= 1=0.5

= T =0.75 0.8
1.0 =09

1.8

r0.9
0.6 4

r0.0

Loss Value

0.4

Quantile Level ()

0.2 -1.8

-2.7

r r r r r r r r T r r r 1
-2.0 =15 -1.0 -0.5 0.0 0.5 1.0 15 2.0 -3 -2 -1 0 1 2 3
Predicted Value - True Value (Y - y) Prediction Error (y -y

Pinball Loss visualization created successfully!

Practical Example: Quantile Regression
Let’s demonstrate quantile regression on synthetic data:
from scipy.optimize import minimize

Generate synthetic data
np.random.seed (42)

X = np.linspace(0, 10, 100)

True function with heteroscedastic noise
y = 2 * X + 5 + np.random.normal (0, X/2)

Define pinball loss for regression
def pinball_loss_regression(params, X, y, tau):
"""Compute pinball loss for linear regression"""
predictions = params[0] * X + params[1]
errors = y — predictions
loss = np.where(errors >= 0,
tau * errors,
(1 - tau) * errors)
return np.mean(loss)

Fit models for different quantiles
quantiles = [0.1, 0.25, 0.5, 0.75, 0.9]
models = {3}

for tau in quantiles:
result = minimize(
lambda p: pinball_loss_regression(p, X, y, tau),
x0=[1, 0],
method="'BFGS'
)

models[tau] = result.x

Plot results
fig, ax = plt.subplots(figsize=(12, 6))

Scatter plot of data
ax.scatter(X, y, alpha=0.6, s=50, label='Data points', color='gray')

Plot fitted quantile regression lines
X_line = np.linspace(0, 10, 100)
colors = plt.cm.coolwarm(np.linspace(0, 1, len(quantiles)))

for tau, color in zip(quantiles, colors):
slope, intercept = models[tau]
y_line = slope * X_line + intercept
ax.plot(X_line, y_line, label=f' = {tau} (-quantile)',
linewidth=2.5, color=color)

ax.set_xlabel('X', fontsize=12)

ax.set_ylabel('y', fontsize=12)

ax.set_title('Quantile Regression: Fitting Different Quantiles',
fontsize=13, fontweight='bold')

ax.legend(fontsize=10, loc='upper left')
ax.grid(True, alpha=0.3)

plt.tight_layout ()
plt.show()

print ("\nQuantile Regression Model Parameters:")
print("-" x 40)
for tau in quantiles:
slope, intercept = models[tau]
print(f" = {tau:0.2f}: y = {slope:.3f}x + {intercept:.3f}")

1e8 Quantile Regression: Fitting Different Quantiles

© Data points
T = 0.1 (T-quantile)
T = 0.25 (T-quantile)
81 T = 0.5 (t-quantile)
T = 0.75 (T-quantile)
m— T = 0.9 (T-quantile)

= 0.10: y = 513.000x + 102.400

= 0.25: y = 88618283.014x + 17723656.403

= 0.50: y = 88618283.014x + 17723656.403

= 0.75: y = 57233859.380x + 12991415.525

= 0.90: y = 83005819.871x + 26345332.109
Applications

Pinball loss is particularly useful in:

1. Risk Estimation: Modeling confidence intervals and prediction bounds

2. Demand Forecasting: Predicting different service levels (e.g., 10th percentile for low
demand, 90th for high demand)

. Financial Modeling: Value at Risk (VaR) estimation

Weather Prediction: Probabilistic forecasting

5. Robust Regression: Less sensitive to outliers when using median (= 0.5)

=

Comparison with Other Loss Functions

Compare pinball loss with MSE and MAE
y_true = 0O
y_pred = np.linspace(-3, 3, 100)

fig, ax = plt.subplots(figsize=(10, 6))

MSE
mse = (y_pred - y_true) ** 2
ax.plot(y_pred, mse, label='MSE', linewidth=2.5, color='red', linestyle='-"')

MAE
mae = np.abs(y_pred - y_true)
ax.plot(y_pred, mae, label='MAE', linewidth=2.5, color='blue', linestyle='-"')

Pinball loss (=0.5)
pinball = np.where(y_true >= y_pred,
0.5 * (y_true - y_pred),
0.5 * (y_true - y_pred))
ax.plot(y_pred, np.abs(pinball), label='Pinball (=0.5)',
linewidth=2.5, color='green', linestyle='-"')

Pinball loss (=0.1)
pinball_01 = np.where(y_true >= y_pred,
0.1 * (y_true - y_pred),
0.9 * (y_true - y_pred))
ax.plot(y_pred, np.abs(pinball_01), label='Pinball (=0.1)',
linewidth=2.5, color='orange', linestyle='--')

ax.set_xlabel('Prediction Error', fontsize=12)

ax.set_ylabel('Loss Value', fontsize=12)

ax.set_title('Comparison of Different Loss Functions', fontsize=13, fontweight='bold')
ax.legend(fontsize=11)

ax.grid(True, alpha=0.3)

plt.tight_layout ()
plt.show()

print("Loss function comparison plotted!")

Comparison of Different Loss Functions

— MSE

— MAE

= Pinball (1=0.5)
Pinball (t=0.1)

Loss Value

-3 -2 -1 0 1 2 3
Prediction Error

Loss function comparison plotted!

Summary

The Pinball Loss is a powerful and flexible loss function that:

e Generalizes MAE and other loss functions

e Allows asymmetric penalization of prediction errors

e Enables quantile regression for uncertainty estimation
e Is robust to outliers

e Has diverse real-world applications

By adjusting the quantile parameter 7, practitioners can fine-tune their models to different
business objectives and risk profiles.

	Introduction to Pinball Loss
	Mathematical Definition
	Key Properties

	Interactive Visualization
	Practical Example: Quantile Regression
	Applications
	Comparison with Other Loss Functions
	Summary

