{
"cells": [
{
"cell_type": "markdown",
"id": "81365e4d",
"metadata": {},
"source": [
"# TimeDB Quickstart\n",
"\n",
"Get started with TimeDB in 5 minutes. Learn how to store and query time series data with forecast revisions."
]
},
{
"cell_type": "markdown",
"id": "727d20ab",
"metadata": {},
"source": [
"## 1. Setup\n",
"\n",
"Import TimeDB and create a client."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "86225072",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Creating database schema...\n",
"✓ Schema created successfully\n"
]
}
],
"source": [
"from timedb import TimeDataClient\n",
"import pandas as pd\n",
"from datetime import datetime, timedelta, timezone\n",
"from dotenv import load_dotenv\n",
"load_dotenv()\n",
"\n",
"td = TimeDataClient()\n",
"td.delete()\n",
"td.create()"
]
},
{
"cell_type": "markdown",
"id": "9b575168",
"metadata": {},
"source": [
"## 2. Create a Series\n",
"\n",
"A series is identified by its name and optional labels. Since this is forecast data, we set `overlapping=True`."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5d16c90e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" id=1 name=wind_power unit=MW labels={'site': 'offshore_1', 'type': 'forecast'} overlapping=True\n"
]
}
],
"source": [
"series_id = td.create_series(\n",
" name='wind_power',\n",
" unit='MW',\n",
" labels={'site': 'offshore_1', 'type': 'forecast'},\n",
" overlapping=True\n",
")\n",
"\n",
"# See what was created\n",
"for s in td.series('wind_power').list_series():\n",
" print(f\" id={s['series_id']} name={s['name']} unit={s['unit']} labels={s['labels']} overlapping={s['overlapping']}\")"
]
},
{
"cell_type": "markdown",
"id": "bfe4742f",
"metadata": {},
"source": [
"## 3. Insert Data\n",
"\n",
"Insert time series data with a DataFrame. The `known_time` indicates when the forecast was made."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "fd33e96b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"InsertResult(batch_id=1, workflow_id='sdk-workflow', series_id=1)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create forecast data\n",
"start = datetime(2025, 1, 1, 0, 0, tzinfo=timezone.utc)\n",
"times = [start + timedelta(hours=i) for i in range(24)]\n",
"values = [100 + i * 2 for i in range(24)] # Simple increasing pattern\n",
"\n",
"df = pd.DataFrame({\n",
" 'valid_time': times,\n",
" 'value': values\n",
"})\n",
"\n",
"# Insert with known_time (when forecast was made)\n",
"td.series('wind_power').where(site='offshore_1', type='forecast').insert(\n",
" df=df,\n",
" known_time=start\n",
")"
]
},
{
"cell_type": "markdown",
"id": "27fbffd7",
"metadata": {},
"source": [
"## 4. Insert a Revised Forecast\n",
"\n",
"Insert an updated forecast for the same time period with a new `known_time`."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8427abfb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"InsertResult(batch_id=2, workflow_id='sdk-workflow', series_id=1)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create revised forecast (made 6 hours later)\n",
"revised_known = start + timedelta(hours=6)\n",
"revised_values = [105 + i * 2 for i in range(24)] # Slightly different values\n",
"\n",
"df_revised = pd.DataFrame({\n",
" 'valid_time': times,\n",
" 'value': revised_values\n",
"})\n",
"\n",
"td.series('wind_power').where(site='offshore_1', type='forecast').insert(\n",
" df=df_revised,\n",
" known_time=revised_known\n",
")"
]
},
{
"cell_type": "markdown",
"id": "8caf881c",
"metadata": {},
"source": [
"## 5. Read Latest Values\n",
"\n",
"Get the most recent forecast for each time point."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d96d7e5e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" value | \n",
"
\n",
" \n",
" | valid_time | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | 2025-01-01 00:00:00+00:00 | \n",
" 105.0 | \n",
"
\n",
" \n",
" | 2025-01-01 01:00:00+00:00 | \n",
" 107.0 | \n",
"
\n",
" \n",
" | 2025-01-01 02:00:00+00:00 | \n",
" 109.0 | \n",
"
\n",
" \n",
" | 2025-01-01 03:00:00+00:00 | \n",
" 111.0 | \n",
"
\n",
" \n",
" | 2025-01-01 04:00:00+00:00 | \n",
" 113.0 | \n",
"
\n",
" \n",
" | 2025-01-01 05:00:00+00:00 | \n",
" 115.0 | \n",
"
\n",
" \n",
" | 2025-01-01 06:00:00+00:00 | \n",
" 117.0 | \n",
"
\n",
" \n",
" | 2025-01-01 07:00:00+00:00 | \n",
" 119.0 | \n",
"
\n",
" \n",
" | 2025-01-01 08:00:00+00:00 | \n",
" 121.0 | \n",
"
\n",
" \n",
" | 2025-01-01 09:00:00+00:00 | \n",
" 123.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" value\n",
"valid_time \n",
"2025-01-01 00:00:00+00:00 105.0\n",
"2025-01-01 01:00:00+00:00 107.0\n",
"2025-01-01 02:00:00+00:00 109.0\n",
"2025-01-01 03:00:00+00:00 111.0\n",
"2025-01-01 04:00:00+00:00 113.0\n",
"2025-01-01 05:00:00+00:00 115.0\n",
"2025-01-01 06:00:00+00:00 117.0\n",
"2025-01-01 07:00:00+00:00 119.0\n",
"2025-01-01 08:00:00+00:00 121.0\n",
"2025-01-01 09:00:00+00:00 123.0"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Read latest forecast values\n",
"df_latest = td.series('wind_power').where(site='offshore_1', type='forecast').read(\n",
" start_valid=start,\n",
" end_valid=start + timedelta(hours=24)\n",
")\n",
"df_latest.head(10)"
]
},
{
"cell_type": "markdown",
"id": "1168d9dd",
"metadata": {},
"source": [
"## 6. Read All Forecast Revisions\n",
"\n",
"Get all forecast versions to see how predictions changed over time."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "de3e558e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"All revisions (multi-index: known_time, valid_time):\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" value | \n",
"
\n",
" \n",
" | known_time | \n",
" valid_time | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | 2025-01-01 00:00:00+00:00 | \n",
" 2025-01-01 00:00:00+00:00 | \n",
" 100.0 | \n",
"
\n",
" \n",
" | 2025-01-01 01:00:00+00:00 | \n",
" 102.0 | \n",
"
\n",
" \n",
" | 2025-01-01 02:00:00+00:00 | \n",
" 104.0 | \n",
"
\n",
" \n",
" | 2025-01-01 03:00:00+00:00 | \n",
" 106.0 | \n",
"
\n",
" \n",
" | 2025-01-01 04:00:00+00:00 | \n",
" 108.0 | \n",
"
\n",
" \n",
" | 2025-01-01 05:00:00+00:00 | \n",
" 110.0 | \n",
"
\n",
" \n",
" | 2025-01-01 06:00:00+00:00 | \n",
" 112.0 | \n",
"
\n",
" \n",
" | 2025-01-01 07:00:00+00:00 | \n",
" 114.0 | \n",
"
\n",
" \n",
" | 2025-01-01 08:00:00+00:00 | \n",
" 116.0 | \n",
"
\n",
" \n",
" | 2025-01-01 09:00:00+00:00 | \n",
" 118.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" value\n",
"known_time valid_time \n",
"2025-01-01 00:00:00+00:00 2025-01-01 00:00:00+00:00 100.0\n",
" 2025-01-01 01:00:00+00:00 102.0\n",
" 2025-01-01 02:00:00+00:00 104.0\n",
" 2025-01-01 03:00:00+00:00 106.0\n",
" 2025-01-01 04:00:00+00:00 108.0\n",
" 2025-01-01 05:00:00+00:00 110.0\n",
" 2025-01-01 06:00:00+00:00 112.0\n",
" 2025-01-01 07:00:00+00:00 114.0\n",
" 2025-01-01 08:00:00+00:00 116.0\n",
" 2025-01-01 09:00:00+00:00 118.0"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Read all forecast revisions\n",
"df_all = td.series('wind_power').where(site='offshore_1', type='forecast').read(\n",
" start_valid=start,\n",
" end_valid=start + timedelta(hours=24),\n",
" versions=True\n",
")\n",
"print(f\"All revisions (multi-index: known_time, valid_time):\")\n",
"df_all.head(10)"
]
},
{
"cell_type": "markdown",
"id": "093a6b21",
"metadata": {},
"source": [
"## 7. Compare Forecasts\n",
"\n",
"Visualize how the forecast changed between revisions."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "cebf76af",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA4+JJREFUeJzs3Xlc1WX6//HXOayyi4KsIu7iggpq2qKWJmpYaWJpVrYvzkxZjdPMlNrUtI5t8536NdNuplhZ2kLZYouaioqpaLmgAoKoyKaynfP5/fHRgycBwWQR38/Hg4ee69yfz7kO507j8r6v22IYhoGIiIiIiIiIiEgjsjZ1AiIiIiIiIiIicv5RUUpERERERERERBqdilIiIiIiIiIiItLoVJQSEREREREREZFGp6KUiIiIiIiIiIg0OhWlRERERERERESk0akoJSIiIiIiIiIijU5FKRERERERERERaXQqSomIiIiIiIiISKNTUUpERETkPNahQwduuummel0ze/ZsLBZLwyQkIiIi5w0VpUREROSse/PNN7FYLNV+/eUvf2nq9Brc/Pnzef755+s8vkOHDk7fI29vbwYOHMjbb7/dcEmKiIiINDGLYRhGUychIiIiLcubb77JtGnTePTRR4mOjnZ6rlevXvTt27dpEmskV1xxBZs3b2b37t11Gt+hQwdat27N/fffD0BOTg7/+9//+PXXX3n11Ve57bbbGizXsrIyrFYrbm5udb6msrKSyspKPD09GywvERERaflcmzoBERERablGjx5NfHz8Wb/vkSNH8Pb2Puv3bUrh4eFcf/31jsc33XQTHTt25LnnnmvQopSHh0e9r3F1dcXVVf8bKSIiIr+Ptu+JiIhIk/nmm2+4+OKL8fb2JiAggCuvvJKtW7c6jTnRvyg9PZ3JkyfTunVrLrroIsfz8+bNIy4ujlatWhEYGMi1115LZmbmKa+1evVqxowZQ+vWrfH29qZPnz688MILjud//vlnRyHI09OTkJAQbr75Zg4dOuR0n+LiYu699146dOiAh4cHwcHBjBw5kvXr1wMwbNgwPv30U/bs2ePYjtehQ4d6f2+CgoLo3r07O3fudIrb7Xaef/55evbsiaenJ+3ateOOO+7g8OHDjjFXXHEFHTt2rPa+gwcPdioU/ranVEVFBXPmzKFLly54enrSpk0bLrroIpYtW+YYU11PqcrKSv7xj3/QqVMnPDw86NChA3/9618pKytzGtehQweuuOIKfvzxRwYOHIinpycdO3Y8ZatiXfIQERGRc5v+iUtEREQaTGFhIQcPHnSKtW3bFoCvvvqK0aNH07FjR2bPns2xY8d46aWXuPDCC1m/fv0phZyJEyfSpUsX/vnPf3Ki+8Djjz/Oww8/TFJSErfeeisHDhzgpZde4pJLLmHDhg0EBAQAsGzZMq644gpCQ0P505/+REhICFu3buWTTz7hT3/6k2PMrl27mDZtGiEhIWzZsoVXX32VLVu28NNPPzmKMHfeeSfvv/8+06dPJyYmhkOHDvHjjz+ydetW+vfvz9/+9jcKCwvJysriueeeA8DHx6fe37vKykqysrJo3bq1U/yOO+5wbI/84x//SEZGBv/+97/ZsGEDK1aswM3NjUmTJnHDDTewdu1aBgwY4Lh2z549/PTTTzzzzDM1vu7s2bN54oknuPXWWxk4cCBFRUWkpqayfv16Ro4cWeN1t956K2+99RbXXHMN999/P6tXr+aJJ55g69atLF682Gnsjh07uOaaa7jlllu48cYbef3117npppuIi4ujZ8+evysPEREROYcYIiIiImfZG2+8YQDVfp3Qt29fIzg42Dh06JAjtnHjRsNqtRo33HCDIzZr1iwDMK677jqn19i9e7fh4uJiPP74407xTZs2Ga6uro54ZWWlER0dbURFRRmHDx92Gmu32x2/P3r06Cnv47333jMA4/vvv3fE/P39jXvuuafW9z927FgjKiqq1jEni4qKMi6//HLjwIEDxoEDB4xNmzYZU6dONQCn1/rhhx8MwHj33Xedrk9JSXGKFxYWGh4eHsb999/vNO7pp582LBaLsWfPHqfXvvHGGx2PY2NjjbFjx9aa74nP5IS0tDQDMG699VancQ888IABGN98843T6/32e5qXl3dKvnXJQ0RERM5t2r4nIiIiDeb//u//WLZsmdMXmI2809LSuOmmmwgMDHSM79OnDyNHjuSzzz475V533nmn0+MPP/wQu91OUlISBw8edHyFhITQpUsXvv32WwA2bNhARkYG9957r2Pl1Aknb0Fr1aqV4/elpaUcPHiQCy64AMCxNQ8gICCA1atXs2/fvjP8rlTvyy+/JCgoiKCgIHr37s0777zDtGnTnFY1LVq0CH9/f0aOHOn0nuPi4vDx8XG8Zz8/P0aPHk1ycrJjVRnAwoULueCCC2jfvn2NeQQEBLBlyxa2b99e59xPfF4zZsxwip9o3P7pp586xWNiYrj44osdj4OCgujWrRu7du36XXmIiIjIuUVFKREREWkwAwcOZMSIEU5fYG4jA+jWrdsp1/To0YODBw9y5MgRp/hvT/Hbvn07hmHQpUsXRzHnxNfWrVvJy8sDcPRk6tWrV6255ufn86c//Yl27drRqlUrgoKCHK9ZWFjoGPf000+zefNmIiMjGThwILNnz3YqppypQYMGsWzZMlJSUnj22WcJCAjg8OHDuLu7O73nwsJCgoODT3nPJSUljvcMMGnSJDIzM1m1apXj+7Bu3TomTZpUax6PPvooBQUFdO3ald69e/Pggw/y888/13rNnj17sFqtdO7c2SkeEhJCQECA4/M+obqiWOvWrZ36Yp1JHiIiInJuUU8pEREROSecvJIJzIbfFouFzz//HBcXl1PG17ePU1JSEitXruTBBx+kb9+++Pj4YLfbSUhIwG63O427+OKLWbx4MV9++SXPPPMMTz31FB9++CGjR48+szeH2WvrRNFu1KhRdO/enSuuuIIXXnjBsQLJbrcTHBzMu+++W+09goKCHL9PTEzEy8uL5ORkhgwZQnJyMlarlYkTJ9aaxyWXXMLOnTv5+OOP+fLLL/nf//7Hc889xyuvvMKtt95a67W/bX5ek+o+L8BpVdfvyUNERETODSpKiYiISKOLiooC4JdffjnluW3bttG2bVu8vb1rvUenTp0wDIPo6Gi6du1a6ziAzZs3O4o+v3X48GG+/vpr5syZwyOPPOKI17R1LDQ0lLvvvpu7776bvLw8+vfvz+OPP+4oStW1OFObsWPHMnToUP75z39yxx134O3tTadOnfjqq6+48MILTynS/Za3tzdXXHEFixYtYu7cuSxcuJCLL76YsLCw0752YGAg06ZNY9q0aZSUlHDJJZcwe/bsGotBUVFR2O12tm/fTo8ePRzx/fv3U1BQ4Pi866u+eYiIiMi5Rdv3REREpNGFhobSt29f3nrrLQoKChzxzZs38+WXXzJmzJjT3mP8+PG4uLgwZ84cpxU2YK64OXToEAD9+/cnOjqa559/3um1ToyDqpU7v73P888/7/TYZrM5beUDCA4OJiwsjLKyMkfM29v7lHFnYubMmRw6dIj//ve/gLlKy2az8Y9//OOUsZWVlae8v0mTJrFv3z7+97//sXHjxtNu3QMc37cTfHx86Ny5s9P7+60Tn9dvv19z584FzAJbfZ1JHiIiInJu0UopERERaRLPPPMMo0ePZvDgwdxyyy0cO3aMl156CX9/f2bPnn3a6zt16sRjjz3GQw89xO7du7nqqqvw9fUlIyODxYsXc/vtt/PAAw9gtVp5+eWXSUxMpG/fvkybNo3Q0FC2bdvGli1b+OKLL/Dz8+OSSy7h6aefpqKigvDwcL788ksyMjKcXrO4uJiIiAiuueYaYmNj8fHx4auvvmLt2rX861//coyLi4tj4cKFzJgxgwEDBuDj40NiYmK9v0ejR4+mV69ezJ07l3vuuYehQ4dyxx138MQTT5CWlsbll1+Om5sb27dvZ9GiRbzwwgtcc801juvHjBmDr68vDzzwAC4uLkyYMOG0rxkTE8OwYcOIi4sjMDCQ1NRU3n//faZPn17jNbGxsdx44428+uqrFBQUMHToUNasWcNbb73FVVddxfDhw+v93s8kDxERETnHNN3BfyIiItJSvfHGGwZgrF27ttZxX331lXHhhRcarVq1Mvz8/IzExEQjPT3dacysWbMMwDhw4EC19/jggw+Miy66yPD29ja8vb2N7t27G/fcc4/xyy+/OI378ccfjZEjRxq+vr6Gt7e30adPH+Oll15yPJ+VlWVcffXVRkBAgOHv729MnDjR2LdvnwEYs2bNMgzDMMrKyowHH3zQiI2NddwnNjbW+M9//uP0WiUlJcbkyZONgIAAAzCioqJq/T5ERUUZY8eOrfa5N9980wCMN954wxF79dVXjbi4OKNVq1aGr6+v0bt3b+PPf/6zsW/fvlOunzJligEYI0aMqPG1b7zxRsfjxx57zBg4cKAREBBgtGrVyujevbvx+OOPG+Xl5Y4xJz6Tk1VUVBhz5swxoqOjDTc3NyMyMtJ46KGHjNLS0jq916FDhxpDhw6tVx4iIiJybrMYxm/WqYuIiIiIiIiIiDQw9ZQSEREREREREZFGp6KUiIiIiIiIiIg0OhWlRERERERERESk0akoJSIiIiIiIiIijU5FKRERERERERERaXQqSomIiIiIiIiISKNzbeoEmgO73c6+ffvw9fXFYrE0dToiIiIiIiIiIo3CMAyKi4sJCwvDam3ctUsqSgH79u0jMjKyqdMQEREREREREWkSmZmZRERENOprqigF+Pr6AuYH4Ofn18TZnBm73c6BAwcICgpq9MqmNB+aBwKaB6I5ICbNA9EcENA8EJPmgdQ2B4qKioiMjHTURhqTilLg2LLn5+d3ThelSktL8fPz0x8y5zHNAwHNA9EcEJPmgWgOCGgeiEnzQOoyB5qinZFmo4iIiIiIiIiINDoVpUREREREREREpNGpKCUiIiIiIiIiIo1OPaXqwWazUVFR0dRpVMtut1NRUUFpaan2CJ+H3NzccHFxaeo0REREREREROpMRak6MAyD3NxcCgoKmjqVGhmGgd1up7i4uEmak0nTCwgIIDg4uKnTEBEREREREakTFaXq4ERBKjg4GC8vr2ZZ9DEMg8rKSlxdXZtlftJwDMPg6NGj5OXlYRiGVsqJiIiIiIjIOUFFqdOw2WyOglSbNm2aOp0aqSh1fmvVqhUA+/fvJyAgoGmTEREREREREakDLak4jRM9pLy8vJo4E5HanZijNputiTMREREREREROT0VpepIq4+kudMcFRERERERkXOJilIiIiIiIiIiItLoVJQSEREREREREZFGp6JUI7HZDVbtPMTHadms2nkIm91o0Ne76aabsFgsp3zt2LGjQV+3Ib355ptnrYl3hw4deP755087rrS0lHvuuYc2bdrg4+PDhAkT2L9/v9OYvXv3MnbsWLy8vAgODubBBx+ksrKy1vsahsEjjzxCaGgorVq1YsSIEWzfvt1pTH5+PlOmTMHPz4+AgABuueUWSkpK6v1eRURERERERJojnb7XCFI25zBnaTo5haWOWKi/J7MSY0joFdpgr5uQkMAbb7zhFAsKCjqje5WXl+Pu7n420jqn3HfffXz66acsWrQIf39/pk+fzvjx41mxYgVgNhUfO3YsISEhrFy5kpycHG644Qbc3Nz45z//WeN9n376aV588UXeeustoqOjefjhhxk1ahTp6el4enoCMGXKFHJycli2bBkVFRVMmzaN22+/nfnz5zfKexcRERERERFpSFop1cBSNudw17z1TgUpgNzCUu6at56UzTkN9toeHh6EhIQ4fbm4uADw3XffMXDgQDw8PAgNDeUvf/mL0+qeYcOGMX36dO69917atm3LqFGjANi8eTOjR4/Gx8eHdu3aMXXqVA4ePOi4zm638/TTT9O5c2c8PDxo3749jz/+uOP5mTNn0rVrV7y8vOjYsSMPP/yw44RDgI0bNzJ8+HB8fX3x8/MjLi6O1NRUli9fzrRp0ygsLHSs+po9e3a173vnzp1ceeWVtGvXDh8fHwYMGMBXX33l9N727NnDfffd57hXdQoLC3nttdeYO3cul156KXFxcbzxxhusXLmSn376CYAvv/yS9PR05s2bR9++fRk9ejT/+Mc/+L//+z/Ky8urva9hGDz//PP8/e9/58orr6RPnz68/fbb7Nu3j48++giArVu3kpKSwv/+9z8GDRrERRddxEsvvcSCBQvYt29fTR+5iIiIiIiINAa7DTJ+gE3vm7/adQr6mVBRqp4Mw+BoeWWdvopLK5i1ZAvVbdQ7EZu9JJ3i0oo63c8wzs6Wv+zsbMaMGcOAAQPYuHEjL7/8Mq+99hqPPfaY07i33noLd3d3VqxYwSuvvEJBQQGXXnop/fr1IzU1lZSUFPbv309SUpLjmoceeognn3yShx9+mPT0dObPn0+7du0cz/v6+vLmm2+Snp7OCy+8wH//+1+ee+45x/NTpkwhIiKCtWvXsm7dOv7yl7/g5ubGkCFDeP755/Hz8yMnJ4ecnBweeOCBat9fSUkJY8aM4euvv2bDhg0kJCSQmJjI3r17Afjwww+JiIjg0UcfddyrOuvWraOiooIRI0Y4Yt27d6d9+/asWrUKgFWrVtG7d2+n9zhq1CiKiorYsmULALt378ZisbB8+XIAMjIyyM3Ndbqvv78/gwYNcrpvQEAA8fHxjjEjRozAarWyevXqavMVERERERGRRpC+BJ7vBW9dAR/cYv76fC8zLvWi7Xv1dKzCRswjX5yVexlAblEpvWd/Wafx6Y+Owsu97h/ZJ598go+Pj+Px6NGjWbRoEf/5z3+IjIzk3//+NxaLhe7du7Nv3z5mzpzJI488gtVq1iq7dOnC008/7bj+scceo1+/fk7b0l5//XUiIyP59ddfCQ0N5YUXXuDf//43N954IwCdOnXioosucoz/+9//7vh9hw4deOCBB1iwYAF//vOfAbM/04MPPkj37t0dOZzg7++PxWIhJCSk1vcdGxtLbGys4/E//vEPFi9ezJIlS5g+fTqBgYG4uLjg6+tb671yc3Nxd3c/pY9Vu3btyM3NdYw5uSB14vkTzwG4ubnRrVs3vLy8nOLVXXfyfYODg52ed3V1JTAw0DFGREREREREGln6Eki+AX67/KQox4wnvQ0x45oktXORilIt2PDhw3n55Zcdj729vQFza9jgwYOdtq1deOGFlJSUkJWVRfv27QGIi4tzut/GjRv59ttvnQpdJ+zcuZOCggLKysq47LLLasxp4cKFvPjii+zcuZOSkhIqKyvx8/NzPD9jxgxuvfVW3nnnHUaMGMHEiRPp1KlTvd53SUkJs2fP5tNPPyUnJ4fKykqOHTvmWCnV2MLDw9m2bVuTvLaIiIiIiIicJXYbpMzklIIUHI9ZIOUv0H0sWF0aOblzk4pS9dTKzYX0R0fVaeyajHxuemPtace9OW0AA6MD6/Ta9eHt7U3nzp3rdc1vrz9ZSUkJiYmJPPXUU6eMDQ0NZdeuXbXeb9WqVUyZMoU5c+YwatQo/P39WbBgAf/6178cY2bPns3kyZP59NNP+fzzz5k1axYLFizg6quvrnPeDzzwAMuWLePZZ5+lc+fOtGrVimuuuabGHk81CQkJoby8nIKCAqfVUvv373essAoJCWHNmjVO1504na+mVVgn4vv37yc0NNTpur59+zrG5OXlOV1XWVlJfn7+aVeKiYiIiIiISAPYsxKKauvxa0BRtjku+uJGS+tcpp5S9WSxWPByd63T18Vdggj196T6NtpgwTyF7+IuQXW6X00NueurR48erFq1yqlH1YoVK/D19SUiIqLG6/r378+WLVvo0KEDnTt3dvry9vamS5cutGrViq+//rra61euXElUVBR/+9vfiI+Pp0uXLuzZs+eUcV27duW+++7jyy+/ZPz48Y4TBN3d3bHZTt88bsWKFdx0001cffXV9O7dm5CQEHbv3u00pi73iouLw83Nzen9/PLLL+zdu5fBgwcDMHjwYDZt2uRUQFq2bBl+fn7ExMRUe9/o6GhCQkKc7ltUVMTq1aud7ltQUMC6descY7755hvsdjuDBg067fdAREREREREzrLC7LqNK9nfsHm0ICpKNSAXq4VZiWZh4rflpBOPZyXG4GI9O8Wmurr77rvJzMzkD3/4A9u2bePjjz9m1qxZzJgxw9FPqjr33HMP+fn5XHfddaxdu5adO3fyxRdfMG3aNGw2G56ensycOZM///nPvP322+zcuZOffvqJ1157DTD7Q+3du5cFCxawc+dOXnzxRRYvXuy4/7Fjx5g+fTrLly9nz549rFixgrVr19KjRw/A7EFVUlLC119/zcGDBzl69Gi1eXbp0oUPP/yQtLQ0Nm7cyOTJk7Hb7U5jOnTowPfff092drbT6YEn8/f355ZbbmHGjBl8++23rFu3jmnTpjF48GAuuOACAC6//HJiYmKYOnUqGzdu5IsvvuDvf/8799xzDx4eHoDZWL579+6OFVUWi4V7772Xxx57jCVLlrBp0yZuuOEGwsLCuOqqqwCzcJiQkMBtt93GmjVrWLFiBdOnT+faa68lLCzsdB+xiIiIiIiInC37t0DKQ/D5g3Ub79Pu9GMEUFGqwSX0CuXl6/sT4u/pFA/x9+Tl6/uT0Cu0hisbTnh4OJ999hlr1qwhNjaWO++8k1tuucWpCXl1wsLCWLFiBTabjcsvv5zevXtz7733EhAQ4ChmPfzww9x///088sgj9OjRg0mTJjlWEY0bN4777ruP6dOn07dvX1auXMnDDz/suL+LiwuHDh3ihhtuoGvXriQlJTF69GjmzJkDwJAhQ7jzzjuZNGkSQUFBTk3YTzZ37lxat27NkCFDSExMZNSoUfTv399pzKOPPsru3bvp1KkTQUFBNb7n5557jiuuuIIJEyZwySWXEBISwocffuiU8yeffIKLiwuDBw/m+uuv54YbbuDRRx91jKmoqOCXX35xKqL9+c9/5g9/+AO33347AwYMoKSkhJSUFDw9q+bJu+++S/fu3bnssssYM2YMF110Ea+++mqtn5GIiIiIiIicBccKYO3/4NVh8PIQ+Ok/UFYEltrKKBbwC4eoIY2U5LnPYpy8h+s8VVRUhL+/P4WFhU5NtwFKS0vJyMggOjraqWBQXza7wZqMfPKKSwn29WRgdOBZXSFlGAaVlZW4up69bX5ybiktLWXXrl34+voSHh5e66o3adnsdjt5eXkEBwdrHpynNAcENA9Ec0BMmgcCmgd1ZrfD7h9gwzuwdSlUlppxqxt0Gw39pkL5EXh/2vELTi6nHP85vJmevlfbHKitJtLQmnQ2fv/99yQmJhIWFobFYuGjjz5yev6mm27CYrE4fSUkJDiNyc/PZ8qUKfj5+REQEMAtt9xCSUlJI76LunGxWhjcqQ1X9g1ncKc2jb5lT0RERERERESqUbAXlj8FL8bC2+Ng0yKzIBUcA6OegPu3waR3oOvl0Otqs/Dk95tdT35hzbYg1Zw16el7R44cITY2lptvvpnx48dXOyYhIcHR6Bpw9Ok5YcqUKeTk5LBs2TIqKiqYNm0at99+O/Pnz2/Q3EVERERERETkHFVRCts+gQ3zYNdyHKuePPyg9zXmqqiwflDdTqSYcdB9rHnKXsl+s4dU1BCwujTmO2gRmrQoNXr0aEaPHl3rGA8PD0JCQqp9buvWraSkpLB27Vri4+MBeOmllxgzZgzPPvusGkKLiIiIiIiISJV9aWYhalMylBZWxaMvMQtR3a8Ad6/T38fqAtEXN1ia54smLUrVxfLlywkODqZ169ZceumlPPbYY7Rp0waAVatWERAQ4ChIAYwYMQKr1crq1au5+uqrmyptEREREREREWkOjuabW/I2vAO5m6rifhHQbwr0nQytOzRZeuezZl2USkhIYPz48URHR7Nz507++te/Mnr0aFatWoWLiwu5ubkEBwc7XePq6kpgYCC5ubk13resrIyysjLH46KiIsBs/GW3253G2u12DMNwfDVnJ/Jr7nlKwzj58//tPJbzy4k/tzQPzl+aAwKaB6I5ICbNA4HzdB7YbbBrOZa0d+GXT7HYygEwXNyh+xUYfa83V0ed2HLXwr83tc2BppwXzboode211zp+37t3b/r06UOnTp1Yvnw5l1122Rnf94knnmDOnDmnxA8cOEBpaalTrKKiArvdTmVlJZWVlWf8mg3NMAxsNhuATt87T1VWVmK32ykuLiYvL0+napzH7HY7hYWFGIaheXCe0hwQ0DwQzQExaR4InF/zwKUok1a/fEirXxbjUpLjiFe0jeFY9wkc63wFhmeAGTx4qGmSbAK1zYHi4uImyqqZF6V+q2PHjrRt25YdO3Zw2WWXERISQl5entOYyspK8vPza+xDBfDQQw8xY8YMx+OioiIiIyMJCgo65fjD0tJSiouLcXV1xdW1+X+73NzcmjoFaSKurq5YrVZ8fHx01Ot5zm63Y7FYCAoK0jw4T2kOCGgeiOaAmDQPBM6DeVBxFLYuxZL2LpbdPzjChmcA9EnCiJ2CS2gffACfJkuyadU2Bzw9PZsoq3OsKJWVlcWhQ4cIDTWPXhw8eDAFBQWsW7eOuLg4AL755hvsdjuDBg2q8T4eHh6nnOIHYLVaT/lwrFYrFovF8dVcGYbhyK855ykN5+TPv7q5LOcXzQPRHBDQPBDNATFpHgi0wHlgGJC93uwTtfkDKCs6/oQFOl0K/a7H0m0MuHmin5BNNc2BppwTTVqUKikpYceOHY7HGRkZpKWlERgYSGBgIHPmzGHChAmEhISwc+dO/vznP9O5c2dGjRoFQI8ePUhISOC2227jlVdeoaKigunTp3Pttdfq5D0RERERERGRc4ndBntWQsl+8GkHUUOqej6dcOQgbFxgnqB3YGtVPCAK+l0PsddBQGTj5i1nrEmLUqmpqQwfPtzx+MSWuhtvvJGXX36Zn3/+mbfeeouCggLCwsK4/PLL+cc//uG0yundd99l+vTpXHbZZVitViZMmMCLL77Y6O9FRERERERERM5Q+hJImQlF+6pifmGQ8BR0GwM7vzZXRf3yOdiP93t29YSYK81iVNRF0FJWgZ1HmvQTGzZsmNPJdie+3nzzTVq1asUXX3xBXl4e5eXl7N69m1dffZV27do53SMwMJD58+dTXFxMYWEhr7/+Oj4+zXCXqN0GGT/ApvfNX+22Bn25m266yWnb4Ymvk1emnWvefPNNAgICzsq9OnTowPPPP3/acaWlpdxzzz20adMGHx8fJkyYwP79+6vNrU+fPnh6ehIcHMw999xz2nv/3//9Hx06dMDT05NBgwaxZs2aM3ptERERERGRc1r6Eki+wbkgBebj5KnwTCeYnwRbl5oFqbD+cMVzcP8vMP7V46foqSB1Ljqnekqds2qr+MaMa7CXTUhI4I033nCKBQUFndG9ysvLcXd3PxtpnVPuu+8+Pv30UxYtWoS/vz/Tp09n/PjxrFixwjFm7ty5/Otf/+KZZ55h0KBBHDlyhN27d9d634ULFzJjxgxeeeUVBg0axPPPP8+oUaP45ZdfCA4OrvNri4iIiIiInNPsNvPnZYyax5QWQKtAc2tevynQrmdjZScNTKXEhlZjxTfHjKcvabCX9vDwICQkxOnLxcXcj/vdd98xcOBAPDw8CA0N5S9/+QuVlZWOa4cNG8b06dO59957adu2raOP1+bNmxk9ejQ+Pj60a9eOqVOncvDgQcd1drudp59+ms6dO+Ph4UH79u15/PHHHc/PnDmTrl274uXlRceOHXn44YepqKhwPL9x40aGDx+Or68vfn5+xMXFkZqayvLly5k2bRqFhYWOVV+zZ8+u9n3v3LmTK6+8knbt2uHj48OAAQP46quvnN7bnj17uO+++2ptYF9YWMhrr73G3LlzufTSS4mLi+ONN95g5cqV/PTTTwAcPnyYv//977z99ttMnjyZTp060adPH8aNq73YOHfuXG677TamTZtGTEwMr7zyCl5eXrz++ut1fm0REREREZFz3p6Vp/68XJ0Jr0PCP1WQamFUlKovw4DyI3X7Ki2Cz/9M9RXf47GUmea4utzPqKVyXA/Z2dmMGTOGAQMGsHHjRl5++WVee+01HnvsMadxb731Fu7u7qxYsYJXXnmFgoICLr30Uvr160dqaiopKSns37+fpKQkxzUPPfQQTz75JA8//DDp6enMnz/faculr68vb775Junp6bzwwgv897//5bnnnnM8P2XKFCIiIli7di3r1q3jL3/5C25ubgwZMoTnn38ePz8/cnJyyMnJ4YEHHqj2/ZWUlDBmzBi+/vprNmzYQEJCAomJiezduxeADz/8kIiICB599FHHvaqzbt06KioqGDFihCPWvXt32rdvz6pVqwBYtmwZdrud7OxsevToQUREBElJSWRmZjrdy2Kx8OabbwLmqrN169Y53ddqtTJixAjHfevy2iIiIiIiIue04v2w7s26jT12qEFTkaah7Xv1VXEU/nm2TvYzzIrwk3U8GeCv+8Ddu853/+STT5z6a40ePZpFixbxn//8h8jISP79739jsVjo3r07+/btY+bMmTzyyCOO4yC7dOnC008/7bj+scceo1+/fvzzn/90xF5//XUiIyP59ddfCQ0N5YUXXuDf//43N954IwCdOnXioosucoz/+9//7vh9hw4deOCBB1iwYAF//vOfAdi7dy8PPvgg3bt3d+Rwgr+/PxaLhZCQkFrfd2xsLLGxsY7H//jHP1i8eDFLlixh+vTpBAYG4uLigq+vb633ys3Nxd3d/ZQ+Vu3atSM3NxeAXbt2Ybfb+ec//8kLL7yAv78/f//73xk5ciQ///yzY8tjt27d8Pf3B+DgwYPYbLZT+qO1a9eObdu21fm1RUREREREzjm2Ctj+Jax/x/zVqGO/ZZ92px8j5xwVpVqw4cOH8/LLLzsee3ubBa2tW7cyePBgp21rF154ISUlJWRlZdG+fXsA4uLinO63ceNGvv3222obye/cuZOCggLKysq47LLLasxp4cKFvPjii+zcuZOSkhIqKyvx8/NzPD9jxgxuvfVW3nnnHUaMGMHEiRPp1KlTvd53SUkJs2fP5tNPPyUnJ4fKykqOHTvmWCl1NtntdioqKnjxxRe5/PLLAXjvvfcICQnh22+/dWx7PFFsEhEREREROS/lbYO0ebBxARw5UBWPGAgHf4XSQqrfZWQxezJHDWmsTKURqShVX25e5oqlutizEt695vTjprxft//A3Lzq9rrHeXt707lz53pd89vrT1ZSUkJiYiJPPfXUKWNDQ0PZtWtXrfdbtWoVU6ZMYc6cOYwaNQp/f38WLFjAv/71L8eY2bNnM3nyZD799FM+//xzZs2axYIFC7j66qvrnPcDDzzAsmXLePbZZ+ncuTOtWrXimmuuoby8vM73AAgJCaG8vJyCggKnFUv79+93rLAKDQ0FICYmxvF8UFAQbdu2rbEI1rZtW1xcXE45Se/k+9bltUVERERERJq10iLY8iFsmAdZa6vi3sHQ9zroez0Eda3qxYwF58LU8YUUCU+C1aURE5fGop5S9WWxmFvo6vLV6VKzokv1jbTNim+4Oa4u96uhIXd99ejRg1WrVmGc1KNqxYoV+Pr6EhERUeN1/fv3Z8uWLXTo0IHOnTs7fXl7e9OlSxdatWrF119/Xe31K1euJCoqir/97W/Ex8fTpUsX9uzZc8q4rl27ct999/Hll18yfvx4xwmC7u7u2GynX9q5YsUKbrrpJq6++mp69+5NSEjIKafh1eVecXFxuLm5Ob2fX375hb179zJ48GDAXGF2In5Cfn4+Bw8eJCoqqtr7uru7ExcX53Rfu93O119/7bhvXV5bRERERESk2TEM2P0jLL4Tnu0KS/9kFqQsLtBtLFz7HsxIh5GPmgUpME+lT3ob/EKd7+UXZsYb8NR6aVoqSjUkqwsknFhV9NuCUtNVfO+++24yMzP5wx/+wLZt2/j444+ZNWsWM2bMcPSTqs4999xDfn4+1113HWvXrmXnzp188cUXTJs2DZvNhqenJzNnzuTPf/4zb7/9Njt37uSnn37itddeA8z+UHv37mXBggXs3LmTF198kcWLFzvuf+zYMaZPn87y5cvZs2cPK1asYO3atfTo0QMwe1CVlJTw9ddfc/DgQY4ePVptnl26dOHDDz8kLS2NjRs3MnnyZOx2u9OYDh068P3335Odne10euDJ/P39ueWWW5gxYwbffvst69atY9q0aQwePJgLLrgAMAtoV155JX/6059YuXIlmzdv5sYbb6R79+4MHz7cca/u3bs7vdcZM2bw3//+l7feeoutW7dy1113ceTIEaZNm1bn1xYREREREWk2CrPh+2fhxX7w5ljY+B5UHoO2XWHkP2DGVrhuPnQfAy5up14fMw7u3Qw3fgITXjN/vXeTClItnLbvNbQTFd+Umc7HXPqFmQWpJvgPLDw8nM8++4wHH3yQ2NhYAgMDueWWW5yakFcnLCyMFStWMHPmTC6//HLKysqIiooiISHBUcx6+OGHcXV15ZFHHmHfvn2EhoZy5513AjBu3Djuu+8+pk+fTllZGWPHjuXhhx9m9uzZALi4uHDo0CFuuOEG9u/fT9u2bRk/fjxz5swBYMiQIdx5551MmjSJQ4cOMWvWLMe1J5s7dy4333wzQ4YMoW3btsycOZOioiKnMY8++ih33HEHnTp1oqyszGnV2Mmee+45rFYrEyZMoKysjFGjRvGf//zHaczbb7/Nfffdx9ixY7FarQwdOpSUlBTc3Kr+oP3ll18oLCx0PJ40aRIHDhzgkUceITc3l759+5KSkuLU/Lwury0iIiIiItJkKsvgl8/N7Xk7vwbj+GIAd1/oNR76TYWI+Lrv+rG6QPTFDZevNDsWo6afxs8jRUVF+Pv7U1hY6NR0G6C0tJSMjAyio6Px9PQ88xex28weUyX7zVMDooac1RVShmFQWVmJq6urUwNzOX+Ulpaya9cufH19CQ8Pr3XVm7RsdrudvLw8goODNQ/OU5oDApoHojkgJs0DgQaYB7mbzULUzwvhWH5VPOpC6Hc9xFxZr5PjpeHVNgdqq4k0NK2Uaiyq+IqIiIiIiMi56lgBbH7fLEbt21AV9w2FvpOh7xRoU7+T00VUlBIRERERERGRU9ntsPt7sxC1dSlUlppxqxt0Gw39bzAP7tLJeHKGVJQSERERERERkSoFeyFtPmx4Fwr3VsWDY8w+UX2SwLtt0+UnLYaKUiIiIiIiIiLnu4pS2PaJuSpq13LgePtpD3/ofY3ZKyqsX92blovUgYpSIiIiIiIiIi2V3Qa7V+CZ/Ssc7QodLqzabmcYkLPRLERtSobSqhPDiR5qrorqcQW4tWqa3KXFU1Gqjux2e1OnIFKrE3NUpy+KiIiIiAgA6UsgZSbWon0EnIj5hcGlD0NpkVmM2r+parxfBPSbYjYub92h8fOV846KUqfh7u6O1Wpl3759BAUF4e7u3ix/6DcMg8rKSlxdXZtlftJwDMOgvLycAwcOYLVacXFRk0ERERERkfNe+hJIvgHHNrwTivbBR3dVPXZxhx6J5va86KFqWi6NSkWp07BarURHR5OTk8O+ffuaOp0aGYaB3W7HarWqKHWe8vLyIiIigoKCgqZORUREREREmpLdBikzOaUgdTKrG1z+mNm03Cuw0VITOZmKUnXg7u5O+/btqaysxGazNXU61bLb7Rw6dIg2bdpgtVqbOh1pZC4uLri6umIYtfylIyIiIiIi54ed35orompjr4B2PVWQkialolQdWSwW3NzccHNza+pUqmW323Fzc8PT01NFqfOYilIiIiIiIucpw4Ds9bDhHdi4oG7XlOxv2JxETkNFKREREREREZFzVckB+Hmh2bT8wNb6XevTrmFyEqkjFaVEREREREREziW2Stjxlbkq6tcUsFeacVdPiLkSYq+Dj++Gohyq7ytlMU/hixrSmFmLnEJFKREREREREZFzwcEdkDYP0t6DktyqeHiceXperwng6W/GEp46fvqeBefC1PGDsRKe1El7v4PNbrAmI5+84lKCfT0ZGB2Ii1WHjtWXilIiIiIiIiIizVVZCaR/ZG7P27uqKu7VBvpcaxaj2sWcel3MOEh62zyF7+Sm535hZkEqZlyDp95SpWzOYc7SdHIKSx2xUH9PZiXGkNArtAkzO/eoKCUiIiIiIiLSnBgGZK42t+dtXgwVR8y4xQqdR5qFqK4J4Ope+31ixkH3sdh3r6Ao+1f8wrti7XChVkj9Dimbc7hr3vpTNkXmFpZy17z1vHx9fxWm6kFFKREREREREZHmoDjXPDlvwzw4tL0qHtjJLETFXgd+9Sx4WF2gw0WUenXFLzgYdFr7GbPZDeYsTa+2S5eBuTFyztJ0RsaEaCtfHakoJSIiIiIiItJUbBXw6xdmIWr7l2DYzLibF/S8GvpNhfYXgEVFjqa2JiPfacvebxlATmEpazLyGdypTeMldg5TUUpERERERESkseVtM7fn/bwQjhyoikcOMldF9bwaPHybLj9xsn1/Ma9+v7NOY/OKay5ciTMVpUREREREREQaQ2kRbPnQXBWVtbYq7h0Mfa+DvtdDUNemy0+cFJVW8MnGHJJTM0nLLKjzdcG+ng2XVAujopSIiIiIiIhIQzEM2LPCLERt+Qgqj5lxq6vZrLzf9dB5BLi4NWmaYjIMg9UZ+SSvzeSzzTmUVtgBcLVaGN4tiNQ9hyk4WlFtXykLEOLvycDowEbN+VymopSIiIiIiIhIXdltsGcllOwHn3YQNaT60+wKs2HjfNjwLhzOqIq37Xa8afm14BPceHlLrXIKj/HBuiwWrctiz6GjjnjnYB8mxUdyVb9wgnw9HKfvWcCpMHWi49esxBg1Oa8HFaVERERERERE6iJ9CaTMhKJ9VTG/MEh4CmLGQWUZ/PK52Stq5zdgmKtscPeFXuPNpuUR8Wpa3kyUVdr4Kj2P5NRMfth+APvxKpOPhyuJsaFMjI+kX2QAlpM+r4Reobx8fX/mLE13anoe4u/JrMQYEnrV83TE85yKUiIiIiIiIiKnk74Ekm+A327cKsqB5KnQZZTZJ+pYftVzUReaq6JirgR370ZNV2q2NaeI5NRMPtqQzeGjFY74oOhAkuIjGd07BC/3msslCb1CGRkTwpqMfPKKSwn2NbfsaYVU/akoJSIiIiIiIlIbu81cIVVtJ6Hjse1fmL/6hkLfydB3CrTp1FgZymkUHq1gycZsklOz2JRd6Ii38/PgmrgIJsZF0qFt3QuHLlYLgzu1aYhUzysqSomIiIiIiIjUZs9K5y17NRkxG4b8sfoeU9Lo7HaDlTsPkZyaScqWXMorze2Ubi4WRsa0Y2J8JJd0CdIKpyakopSIiIiIiIhIbfZvqds4/0gVpJqBrMNHeX9dFotSs8guOOaIdw/xJel40/JAb/cmzFBOUFFKRERERERE5LcqSmHbJ2bT8l3L63aNT7sGTUlqVlph44stuSxKzWLFzoMYx3dV+nq6clXfcJLiI+kV7ufUtFyanopSIiIiIiIiIgCGATkbYcM82JQMpVW9h3BxB1t5DRdazFP4ooY0SppiMgyDLfuqmpYXlVY6nruwcxuS4iMZ1TMETzetXmuuVJQSERERERGR89vRfPg52SxG7d9UFfeLgH5TzMblOT8fP30PnBueH195k/Cktu79Tja7UacT7Q4fKeejNLNp+dacIkc8PKAV18RFcE1cBJGBXo2ZupwhFaVERERERETk/GO3wa5vYf078MtnVaugXDygxxXQ73qIHlpVaGrdAZLeNk/hO7npuV+YWZCKGdfob6ElSdmcw5yl6eQUljpiof6ezEqMIaFXKDa7wY87DpK8NpNl6fspt5lNy91drYzqGUJSfAQXdmqLVU3LzykqSomIiIiIiMj5I38XpM03v4qyq+KhsdBvKvSaAF6B1V8bMw66jzVP4yvZb/aQihqiFVK/U8rmHO6at95p/RlAbmEpd85bz+heIaRlFjgVrHqF+5EUH8m42DACvNS0/FylopSIiIiIiIi0bOVHYesSc3ve7h+q4p4B0GeSuSoqtE/d7mV1geiLGyTN85HNbjBnafopBSmo2iT5+eZcAAK83LiqbzgT4yPoGebfaDlKw1FRSkRERERERFoew4DsdebpeZs/hLITvYcs0OlSsxDVbQy4eTZpmue7NRn5TiugavLHyzpzz/DOeLhqVVpLoqKUiIiIiIiItBwlB+DnheaqqANbq+IBUeb2vL7XgX9E0+UnTnYeKKnTuE5BPipItUAqSomIiIiIiMi5zVYJO74yV0X9mgL2SjPu2gpirjRXRUVdCFZr0+YpAFTa7Hz36wGSU82m5XUR7KsVbS2RilIiIiIiIiJybjq4A9LmQdp7UJJbFQ+PMwtRvSaAp3oPNRe7DpSwaF0WH6zLIq+4zBF3c7FQYauuqxRYgBB/TwZG19B8Xs5pKkqJiIiIiIjIuaOsBNI/Mrfn7V1VFfdqA7HXQd8p0C6mydITZ0fKKvl0Uw6LUjNZu/uwI97G252r+4UzMT6SjIMl3DVvPYBTw3PL8V9nJcbgYrUgLY+KUiIiIiIiItK07DbYsxJK9oNPO4gaYp5yd4JhQObq403LF0PFETNusULnkeaqqK4J4OreNPmLE8MwWLfnMMmpmXzycw5Hy20AWC0wrFswSfGRXNo9GHdXcztltxBfXr6+P3OWpjs1PQ/x92RWYgwJvUKb5H1Iw1NRSkRERERERJpO+hJImQlF+6pifmGQ8BREDoSN75mrog7tqHo+sJNZiIq9DvxUsGgu8opK+WB9NotSM9l18IgjHt3Wm4nxEUzoH0E7v+p7QyX0CmVkTAhrMvLJKy4l2NfcsqcVUi2bilIiIiIiIiLSNNKXQPINOG/awixQJU8FrIDdjLl5Q8+rzWJU+wvAomJFc1Bhs/PNtjwWpWby7S8HsNnNz9LL3YWxvUNJGhBJfFRrLHX4vFysFgZ3atPQKUszoqKUiIiIiIiIND67zVwh9duClPMgiBgI/W+AnleBh28jJSens31/McmpmSzekM3BknJHPC6qNZPiIxnTJxQfD5UcpHaaISIiIiIiItL49qx03rJXk8segeiLGz4fOa3i0go++TmH5NRMNuwtcMTb+ngwIS6ciXGRdA72aboE5ZyjopSIiIiIiIg0HsOAPSvg28frNr5kf8PmI7UyDIPVGfkkp2by2aYcSivM7ZSuVguXdjeblg/tFoSbi7WJM5VzkYpSIiIiIiIi0vAKs2HjfNjwLhzOqPt1Pu0aLiepUU7hMT5Yl8WidVnsOXTUEe8c7ENSfARX94sgyNejCTOUlkBFKREREREREWkYlWXwy+ew4R3Y+Q0Yx5uWu/uaPaJ+/RyOHKL6vlIW8xS+qCGNmPD5razSxtdb81i4NpMfth/geM9yfDxcSYwNZWJ8JP0iA+rUtFykLlSUEhERERERkbMrdzNsmAc/L4Rj+VXxqIvM0/NixoG790mn71lwLkwdL3okPAlWl0ZMvOWx2Q1W7zrEjqx8Ope4MKhjW1yszkWlrTlFJKdm8tGGbA4frXDEB0UHkhQfyejeIXi5q3wgZ59mlYiIiIiIiPx+xw7DpvfNYlROWlXcNxT6Toa+U6BNJ+drYsZB0tvmKXwnNz33CzMLUjHjGiX1liplcw5zlqaTU1h6PJJBqL8nsxJjGNyxLUs2ZpOcmsWm7ELHNe38PLgmLoKJcZF0aOvdNInLeUNFKRERERERETkzdjvs/t4sRG1dCpXHix9WN+g+BvpNhU6X1r7aKWYcdB9rnsZXst/sIRU1RCukfqeUzTncNW/9KRsjcwpLuXPeelytFiqP789zc7EwMqYdE+MjuaRL0CkrqUQaiopSIiIiIiIiUj8FeyHteNPywr1V8eCe0H8q9E4C7zZ1v5/VBaIvPvt5nqdsdoM5S9Or7dR1QqXdoFs7HyYNaM9V/cIJ9HZvtPxETlBRSkRERERERE6vohS2fWI2Ld/1HY4eUB7+0PsasxgV2hfUBLvJrcnIP2nLXs1mj+vJ4E5tGyEjkeqpKCUiIiIiIiLVMwzI2Whuz9uUDKVVvYeIHmpuz+txBbi1arocxcEwDLbsK+I/y3fUaXxecVkDZyRSOxWlRERERERExNnRfPg52SxG7d9UFfePNBuW970OWndosvTE2eEj5XyUZjYt35pTVOfrgn09GzArkdNTUUpERERERETAboOd35rb8375DGzlZtzFw1wN1e96iB4GVmtTZinH2ewGP2w/wKLULJal76fcZgfA3dXK5THtWLnzEIePlFfbV8oChPh7MjA6sFFzFvktFaVERERERERaIrsNdq/AM/tXONoVOlxY/Yl2+bvMhuUb34Oi7Kp4aKy5Pa/XBPBS8aK52HPoCItSs/hgfZZT36he4X4kxUcyLjaMAC93x+l7FnAqTJ3o+DUrMUan7EmTU1FKRERERESkpUlfAikzsRbtI+BEzC8MEp6CmHFQfhS2LjG35+3+oeq6Vq2hzyRzi15onyZIXKpzrNzG55tzSE7N5Kdd+Y64fys3ru4XzsT4CHqG+Ttdk9ArlJev78+cpelOxasQf09mJcaQ0Cu00fIXqYmKUiIiIiIiIi1J+hJIvgF+u3GrKAeSp0LH4ZC9DspO9B6yQKdLze153caAm/oMNQeGYZCWWUByahZLN+6jpKwSMA83vLhLEEnxEYzo0Q5Pt2pWvx2X0CuUkTEhrN51kB1ZB+gcEcSgjm21QkqaDRWlREREREREWgq7DVJmckpBCqpiu741fw2IMrfn9b0O/CMaK0M5jYMlZXy0IZvk1Ex+3V/iiEcGtiIpLpIJcRGEBdT9tEMXq4ULOraho4+N4OA2WFWQkmZERSkREREREZGWYs9KKNp3+nGj/gmD7lLT8mai0mbnu18PkJyayddb86i0mwVETzcrY3qFMjE+kkHRgSooSYujopSIiIiIiEhLkZNWt3E+7VSQagZ2HihxNC0/UFzmiMdGBpAUH0FibBh+nm5NmKFIw1JRSkRERERE5FxWVgJbFptNyzN/qts1Pu0aNiep0ZGySj792WxanrrnsCPextv9eNPySLqF+DZhhiKNR0UpERERERGRc41hQOZq2PAObF4MFUeOP2EBV3eoLKvhQot5Cl/UkMbKVDCblq/bc5jk1Ew++TmHo+U2AKwWGN4tmInxkVzaPRh3V61ek/OLilIiIiIiIiLniuJc2PieuSrq0I6qeGAn8/S82Osga+3x0/fAueH58X5ECU+CteYT2+TsySsq5YP12SxKzWTXwSOOeHRbbybGRzChfwTt/HTaoZy/mrQM+/3335OYmEhYWBgWi4WPPvqoxrF33nknFouF559/3imen5/PlClT8PPzIyAggFtuuYWSkpLqbyIiIiIiInKusVXA1k9g/rUwNwa+mm0WpNy8oe/1MC0F/rAOLp4BfqEQMw6S3jZ/fzK/MDMeM65J3kZLYbMbrNp5iI/Tslm18xA2u/NJh+WVdlI253LLm2sZ/OQ3PJWyjV0Hj+Dl7sLEuAgW3TmYb+4fyt3DOqsgJee9Jl0pdeTIEWJjY7n55psZP358jeMWL17MTz/9RFhY2CnPTZkyhZycHJYtW0ZFRQXTpk3j9ttvZ/78+Q2ZuoiIiIiISMPK22Zuz/t5IRw5UBWPHAT9pkLPq8Cjht5DMeOg+1jsu1dQlP0rfuFdsXa4UCukfqeUzTnMWZpOTmGpIxbq78msxBg6BfmQnJrJh+uzOXSk3PF8XFRrJsVHMqZPKD4e2qwkcrIm/S9i9OjRjB49utYx2dnZ/OEPf+CLL75g7NixTs9t3bqVlJQU1q5dS3x8PAAvvfQSY8aM4dlnn622iCUiIiIiItJslRbC5g/N7XnZqVVx72Doe525Miqoa93uZXWBDhdR6tUVv+Bgnbb3O6VszuGueesxfhPPKSzlznnrnWJtfTyYEBfOxLhIOgf7NF6SIueYZl2mtdvtTJ06lQcffJCePXue8vyqVasICAhwFKQARowYgdVqZfXq1Vx99dWNma6IiIiIiEj9GQbsWQHr34H0j6HymBm3ukLXBLNXVOcR4OLWtHmex2x2gzlL008pSP3WyB7BTBrQnqHdgnBzURFQ5HSadVHqqaeewtXVlT/+8Y/VPp+bm0twcLBTzNXVlcDAQHJzc2u8b1lZGWVlVadRFBUVAWYRzG63n4XMG5/dbscwjHM2fzk7NA8ENA9Ec0BMmgeiOXAOKMqGje9hSZuP5XCGI2y07YbR73ronQQ+J/28cwafpebB2bF61yGnLXs1mXZhBy7o2AagWX3PNQ+ktjnQlPOi2Ral1q1bxwsvvMD69euxWCxn9d5PPPEEc+bMOSV+4MABSktP/wdNc2S32yksLMQwDKxalnve0jwQ0DwQzQExaR6I5kAzZSvHY/fXeG37APesFVgM84dBu5s3pZ3Hcqz7BCqCY8FigaPA0bzf9XKaB79PeaWdH3YV8saanDqN35F1gI4+tgbOqv40D6S2OVBcXNxEWTXjotQPP/xAXl4e7du3d8RsNhv3338/zz//PLt37yYkJIS8POc/pCsrK8nPzyckJKTGez/00EPMmDHD8bioqIjIyEiCgoLw8/M7+2+mEdjtdiwWC0FBQfpD5jymeSCgeSCaA2LSPBDNgWYmdxOWtHdhUzKWY4cdYSPqQoy+10OPRDzdvTnbZ7FpHpyZrTlFLErN4qO0fRQcq6jzdZ0jgggObtOAmZ0ZzQOpbQ54ejbdKZDNtig1depURowY4RQbNWoUU6dOZdq0aQAMHjyYgoIC1q1bR1xcHADffPMNdrudQYMG1XhvDw8PPDw8TolbrdZz+j9Qi8Vyzr8H+f00DwQ0D0RzQEyaB6I50MSOHYZN75tNy3PSquK+odB3MvSdgqVNJ87uvpBTaR7UTeHRCpZszCY5NYtN2YWOeIifJ+P7h7MoNYuDJWXV9pWyACH+ngzq2BartaE/0TOjeSA1zYGmnBNNWpQqKSlhx44djscZGRmkpaURGBhI+/btadPGucLs5uZGSEgI3bp1A6BHjx4kJCRw22238corr1BRUcH06dO59tprdfKeiIiIiIicfXYb7FkJJfvBpx1EDTFPuXM8b4eM78xC1NalYDvey9bqBt3HQL+p0OlS52ukydjtBit3HiI5NZOULbmUV5rbKd1cLIyMacfE+Egu6RKEi9VCnwh/7pq3Hgs4FaZOlKBmJcbg0kwLUiLNVZMWpVJTUxk+fLjj8YktdTfeeCNvvvlmne7x7rvvMn36dC677DKsVisTJkzgxRdfbIh0RURERETkfJa+BFJmQtG+qphfGCQ8BWF9IW0+bHgXCvdWPR/cE/pPNZuWeze/bV3nq6zDR3l/XRaLUrPILjjmiHcP8SUpPpKr+oUT6O3udE1Cr1Bevr4/c5amOzU9D/H3ZFZiDAm9Qhstf5GWokmLUsOGDcMwTneoZpXdu3efEgsMDGT+/PlnMSsREREREZHfSF8CyTfAbzdvFe2D5KnOMQ9/6DMR+l0PoX3NpuXS5EorbHyxJZdFqVms2HmQEz+K+nq6clXfcJLiI+kV7lfrQVsJvUIZGRPCmox88opLCfb1ZGB0oFZIiZyhZttTSkREREREpFmw28wVUtV2EzpJh0ug/w3Q4wpwa9UoqUntDMNgc3YRyamZfJyWTVFppeO5Czu3ISk+klE9Q/B0q/t2SherhcGdtOpN5GxQUUpERERERKQ2e1Y6b9mrydA/Q/TFDZ+PnNbhI+V8lJbNwrWZbMutOu4+PKAV18RFcE1cBJGBXk2YoYiAilIiIiIiIiLVs9tg57ew/Im6jS/Z37D5SK1sdoMfth9gUWoWy9L3U24zm5a7u1pJ6BlCUnwkQzq1aban44mcj1SUEhEREREROVn+LrNhedp8KK7DCqkTfNo1XE5Soz2HjrAoNYsP1mc5NSDvFe5HUnwkV8aG4+/l1oQZikhNVJQSEREREREpPwpbl8CGebD7h6p4q9bQeyJsWQxHDlJ9XymLeQpf1JDGyva8d6zcxuebc0hOzeSnXfmOeICXG1f1DWdifAQ9w/ybMEMRqQsVpURERERE5PxkGJC9Dja8A5s+gPITvYcs0OlS6D8Vuo0BVw/ocPHx0/csOBemjm8FS3gSrHVvli3ObHbjtCfaGYZBWmYByalZLN24j5Iys2m5xQIXdwliUnwkI2KC8XDV5yByrlBRSkREREREzi8lB+DnBeaqqAPbquKtO0Df66HvdeAf4XxNzDhIets8he/kpud+YWZBKmZco6TeEqVszmHO0nSnrXeh/p7MSowhoVcoB0vKWLw+m+TUTLbnlTjGtA/0YmJcBBPiIggL0GmHIuciFaVERERERKTls1XCjq/MVVG/poDdXGWDayuIuRL6XQ9RF4LVWvM9YsZB97HmaXwl+80eUlFDtELqd0jZnMNd89afsikyt7CUO+etp2+kP5uzi6i0myM83ayM6RXKxPhIBkUHqmm5yDlORSkREREREWm5Dm43V0RtfM/5dLzweLMQ1Ws8eNaj95DVBaIvPvt5nodsdoM5S9Or7dJ1IpaWWQhA38gAkuIjuSI2FD9PNS0XaSlUlBIRERERkZalrMRsTL5hHmT+VBX3agux15rFqOAeTZefALAmI99py15NnrmmDxPjIxshIxFpbCpKiYiIiIjIuc8wIHO1uT1v82KoOGLGLVbocrlZiOoyClzdmzZPAcym5at3HarTWHfXWrZUisg5TUUpERERERE5dxXnmlvzNsyDQzuq4oGdzEJU7HXgF9p0+YmTvKJSPlifzaLUTHYdPFKna4J9PRs4KxFpKipKiYiIiIjIuaWyHLZ/YRaiti8Dw2bG3byh59VmMar9BWBRE+zmoLzSzjfb8liUmsnyXw9gO960vJWbFbBwrMJW7XUWIMTfk4HRgY2XrIg0KhWlRERERESkadltdTvRLm+buT1v4wI4erAqHnmBWYjqeRV4+DZa2lK77fuLSU7N5MP12Rw6Uu6Ix0e1Jik+kjF9Qvlx+wHumrcewKnh+Yly4qzEGFx0wp5Ii6WilIiIiIiINJ30JZAyE4r2VcX8wiDhKYgZB6WFsPlDc1VUdmrVGJ925ta8ftdD2y6Nn7dUq6i0gk825pCcmklaZoEjHuTrwYT+EUyMj6BTkI8jntArlJev78+cpelOTc9D/D2ZlRhDQi9tvRRpyVSUEhERERGRppG+BJJvwHmNDFCUA8lTIepCyF4PlcfMuNUVuiaYhajOI8FFP840B4ZhsDojn+S1mXy2OYfSCjsArlYLl3YPJik+kmHdgnB1qb5heUKvUEbGhLAmI5+84lKCfc0te1ohJdLy6U9xERERERFpfHabuULqtwUpqIrtWWH+2rYb9J8KfSaBT3BjZSinkVN4jA/WZbFoXRZ7Dh11xDsH+zApPpKr+oUT5OtRp3u5WC0M7tSmoVIVkWZKRSkREREREWl8e1Y6b9mryZh/wYBb1LS8mSirtPFVeh7JqZn8sP0Ax3uW4+PhSmJsKBPjI+kXGYBFn5eI1IGKUiIiIiIi0viy1tZtXKsAFaSagfR9RSSnZvJRWjYFRysc8UHRgSTFRzK6dwhe7vrxUkTqR39qiIiIiIhI4zh2GDa9bzYtz0mr2zU+7Ro0JalZ4dEKlmzMJjk1i03ZhY54iJ8n18RFcE1cBB3aejdhhiJyrlNRSkREREREGo7dDhnfmYWorUvBVmbGLa5mo/LK0houtJin8EUNabRUBex2g5U7D5GcmknKllzKK82m5W4uFi6PCWFifAQXdwlSE3IROStUlBIRERERkbOvYC9seBfS5kPh3qp4cE+zaXnvJLORefINx584ueH58YJHwpNgdWmsjM9rWYePsig1i/fXZZFdcMwR7x7iS9LxpuWB3u5NmKGItEQqSomIiIiIyNlRcQy2fQob3oFd3+EoNHn4Q5+J0O96CO1b1SMqZhwkvW2ewndy03O/MLMgFTOusd9Bi2KzG6zedYgdWfl0LnFhUMe2TiucSitsfLEll0WpWazYeRDj+Mfl6+nKVX3DSYqPpFe4n5qWi0iDUVFKRERERETOnGGY/aE2zINNi6C0qvcQ0UOh/w3QfSy4tar++phx5vN7VkLJfrOHVNQQrZD6nVI25zBnaTo5hSe2R2YQ6u/JI1fEENHai+TUTD5Oy6aotNJxzYWd25AUH8moniF4uun7LyINT0UpERERERGpv6P58PNCsxi1f3NV3D8S+k6BvpOhdVTd7mV1geiLGybP81DK5hzumrfeaUMkQE5hKXe9u94pFh7QytG0PDLQq/GSFBFBRSkREREREakruw12fmtuz/vlM7CVm3EXD+iRaG7Pix4KVmvT5nkes9kN5ixNP6Ug9VuJfUKZNKA9Qzq1waqm5SLSRFSUEhERERGR2uXvqmpaXnxS76fQWOg3FXpfA61aN11+4rAmI/+kLXs1mzwoisGd2jRCRiIiNVNRSkRERERETlV+BNKXmNvz9vxYFW/VGvpMMrfohfZpuvzEydHySj7flMt/lu+o0/i84tMXrkREGpqKUiIiIiIiYjIMyF5nbs/b9AGUFx9/wgKdLzO353UbA64eTZqmmAzDIC2zgOTULJZu3EdJWeXpLzou2NezATMTEakbFaVERERERM53JXlVTcsPbKuKt+4Afa+HvteBf0STpSfODpaUsXh9NsmpmWzPK3HE2wd6MaF/OO+u3suB4rJq+0pZgBB/TwZGBzZaviIiNVFRSkRERESkpbHbYPcKPLN/haNdocOF5gl3J7NVwo5lZiHq1xSwH19l49oKYq40V0VFXaim5c1Epc3Od78eYOHaTL7Zlkel3Sw5ebpZGdMrlInxkQyKDsRqtdAtxJe75q3HAk6FqRPtzGclxuCi5uYi0gyoKCUiIiIi0pKkL4GUmViL9hFwIuYXBglPQcw4OLjd3J63cQGU7K+6LjzeLET1Gg+e/k2QuFRn54ESFqVm8cH6LA4UlznifSMDSIqP5IrYUPw83ZyuSegVysvX92fO0nSnpuch/p7MSowhoVdoo+UvIlIbFaVERERERFqK9CWQfAP8duNWUQ4kT4U2XeHQr1Vxr7YQe61ZjAru0aipSs1Kyir57OccklMzSd1z2BFv4+3O1f3CSRoQSdd2vrXeI6FXKCNjQli96yA7sg7QOSKIQR3baoWUiDQrKkqJiIiIiLQEdhukzOSUghRUxQ79Clig6yizENVlFLi6N2KSUhPDMEjdc5jktZl8uimHo+U2AKwWGN4tmInxkVzaPRh317pvp3SxWrigYxs6+tgIDm6DVQUpEWlmVJQSEREREWkJ9qyEon2nHzfxTeh5VUNnI3WUV1TKB+uzWZSaya6DRxzxjm29mRgfyfj+4bTz00l5ItIyqSglIiIiInKuqyyHXz6r29gTDc2lyZRX2vlmWx6LUjNZ/usBbMeblnu5uzC2dyhJAyKJj2qNxaKVTSLSsqkoJSIiIiJyrsrbap6et3EBHD1Yt2t82jVsTlKjX/cXk7w2k8Ubsjl0pNwRj49qTVJ8JGP6hOLjoR/RROT8oT/xRERERETOJaWFsPlD8wS97HVVce9gqDgK5SU1XGgxT+GLGtIoaYqpqLSCTzaaTcvTMgsc8SBfDyb0j2BifASdgnyaLkERkSakopSIiIiISHNnt8OeFeaqqPSPofKYGbe6QtcEs2l555HmFr7kG45fdHLD8+PbwBKeBKtLY2be4tjsBmsy8skrLiXY15OB0YGnnGhntxuszshnUWomn23OobTCDoCr1cKl3YNJio9kWLcgXF3q3rRcRKQlUlFKRERERKS5KsyCtPcgbR4c3l0Vb9sN+k+FPpPAJ7gqHjMOkt42T+E7uem5X5hZkIoZ12ipt0Qpm3OYszSdnMJSRyzU35NZiTEk9Aolp/AY76dmsWhdFnvzjzrGdA72YVJ8JFf1CyfI16MpUhcRaZZUlBIRERERaU4qy8wVTxvmwY6vcax4cveF3hOg31QIj4OammDHjIPuY7HvXkFR9q/4hXfF2uFCrZD6nVI253DXvPVO688AcgtLuXPeemJC/diaW4RxfICPhyuJsWEkxUfQNzJATctFRKqhopSIiIiISHOQu8ksRP28EI4dropHXWRuz4sZB+7edbuX1QU6XESpV1f8goPBqm1iv4fNbjBnafopBSmo2iSZnlMEwKDoQCYNiCShVwhe7vpxS0SkNvpTUkRERESkqRw7DJveN5uW52ysivuGQd/J5lebTk2XnwCwJiPfacteTZ5LiuXq/hGNkJGISMugopSIiIiISGOy2yHjO3NV1NalYCsz41Y36D7W3J7Xabi22zUTdrvBD9sP1Gms1aoteiIi9aGilIiIiIhIYzi8B9LmQ9q7UJhZFQ/uaTYt750E3m2aLj9xkpl/lPfXZfH+uiyyC47V6ZpgX88GzkpEpGVRUUpEREREpKFUHIOtn5jb8zK+q4p7+EOfiWavqNC+NTctl0ZVWmHjiy25JKdmsmLHIUfcx8MFuwFHy23VXmcBQvw9GRgd2EiZioi0DCpKiYiIiIjUhd0Ge1ZCyX7waQdRQ6rfYmcYkJNmbs/btAhKC6ue6zjM3J7XfSy4tWqszKUWhmGwObuI5NRMPk7Lpqi00vHcRZ3bMjE+glE9Q1j+Sx53zVtvXnPS9SfKibMSY3DR9j0RkXpRUUpERERE5HTSl0DKTCjaVxXzC4OEp8xT8QCOHIJNyWYxav/mqnH+kdB3itm0vHVU4+YtNco/Us5HG7JJTs1kW26xIx4e0Ipr4iK4Ji6CyEAvRzyhVygvX9+fOUvTnZqeh/h7MisxhoReoY2av4hIS6CilIiIiIhIbdKXQPINOK+PAYpyzPjF98Oh7bDtM7BXmM+5eECPRHN7XvRQsFobPW05le140/Lk1EyWpe+nwmZ+pu6uVhJ6hpAUH8mQTm1qbFie0CuUkTEhrMnIJ6+4lGBfc8ueVkiJiJwZFaVERERERGpit5krpH5bkIKq2A/PVoVCY83teb2vgVatGyNDqYM9h46wKNVsWp5bVLXKqXe4P0nxEYyLDcffy61O93KxWhjcSQ3pRUTOBhWlRERERERqsmel85a9mvRIhEv+DKF9Gj4nqZOj5ZV8vslsWr46I98RD/By46q+4STFRxIT5teEGYqIiIpSIiIiIiI1Kc6t27iYq1SQagYMwyAts4Dk1CyWbtxHSZnZtNxigUu6BJEUH8mImGA8XKtpUC8iIo1ORSkRERERkd8qyYOfF8Lq/1e38T7tGjYfqdWB4jJH0/LteSWOePtAL5LiIxjfP4KwAJ12KCLS3KgoJSIiIiICYKuEHcvM0/N+TQF7ZR0uspin8EUNafD0xFmlzc7yX8ym5d9sy6PSbvb48nSzMqZXKBPjIxkUHVhj03IREWl6Z1yUqqioIDc3l6NHjxIUFERgYODZzEtEREREpHEc3A4b3oGNC6Bkf1U8PN48Pc+tFSy+83jw5Ibnx4sdCU+CVdvBGsvOAyUsSs3ig/VZHCguc8T7RgaQFB/JFbGh+HnWrWm5iIg0rXoVpYqLi5k3bx4LFixgzZo1lJeXYxgGFouFiIgILr/8cm6//XYGDBjQUPmKiIiIiPx+ZcWw5SNzVVTmT1Vxr7YQe61ZjAruURV38zJP4Tu56blfmFmQihnXaGm3VDa7wZqMfPKKSwn29WRgdCAuJ61wKimr5LOfc0hOzSR1z2FHvI23O+P7hzMxPpKu7XybInUREfkd6lyUmjt3Lo8//jidOnUiMTGRv/71r4SFhdGqVSvy8/PZvHkzP/zwA5dffjmDBg3ipZdeokuXLg2Zu4iIiIhI3RkG7P3JLERtWQwVR8y4xQpdLjcLUV1Ggav7qdfGjIPuY83T+Er2mz2kooZohdRZkLI5hzlL08kpLHXEQv09eeSKGNr6epC8NpNPN+VwtNwGgNUCw7sFkzQgkuHdgnF3tTZV6iIi8jvVuSi1du1avv/+e3r27Fnt8wMHDuTmm2/mlVde4Y033uCHH35QUUpEREREml5xLmx8zyxGHdpRFW/T2SxE9bkW/EJPfx+rC0Rf3HB5nodSNudw17z1TpsiAXIKS7nr3fVOsY5tvZkYH8n4/uG08/NsvCRFRKTB1Lko9d5779VpnIeHB3feeefpB4qIiIiINJTKctj+hVmI2r4MDHOVDW7e0PNqsxjV/gKwqAl2U7HZDeYsTT+lIHUyCzAhLpxrB7QnLqo1Fn1eIiItSr16Sr3xxhtceumlREVFNVQ+IiIiIiJnLm+rWYjauACOHqyKR15gFqJ6XgUe6j3UHKzJyHfaslcdA5jQP5L4DjpUSUSkJapXUeruu++mvLycqKgohg8f7vgKDw9vqPxERERERGpXWgibPzRP0MteVxX3aQex15nFqLZqK9FcFJVW8MnGHF75bmedxucV1164EhGRc1e9ilIFBQWsXLmS7777jm+//Zb58+dTXl5O586dHQWqYcOG0a5du4bKV0REREQE7HbYs8JcFZX+MVQeM+NWV+iaYBaiOo8El3r97640ELvdYHVGPotSM/lscw6lFfY6Xxvsq/5RIiItVb3+lvbw8HAUn2bPnk1paSmrVq3i22+/Zfny5bz11ltUVFRQWVnZUPmKiIiIyPmsMBvS5kPaPDi8uyrethv0nwp9JoFPcJOlJ85yCo/xfmoWi9ZlsTf/qCPeJdiHa+IieO3HDA4Ul1XbV8oChPh7MjBaW/dERFqq3/VPR1arFavVisViwWKxYBgG7du3P1u5iYiIiEhLZ7fBnpVQst/cbhc1xDzl7mSVZfDLZ+aqqB1fw4kShrsv9BoP/aZCRLyaljcTZZU2vkrPIzk1k++3H8A4/nH5eLiSGBtGUnwEfSMDsFgsRLXx4q5567GAU2HqxCc5KzEGF6s+VxGRlqpeRany8nJ++uknli9fzjfffMPq1auJiorikksu4bbbbmPevHlERkY2VK4iIiIi0pKkL4GUmVC0ryrmFwYJT0HMOMjdZBaifl4Ixw5XjYm6yNyeFzMO3L0bP2+pVvq+IpJTM/koLZuCoxWO+KDoQCYNiGR0r1BauTsXHBN6hfLy9f2ZszTdqel5iL8nsxJjSOgV2mj5i4hI46tXUcrf35/g4GASExO55557WLBgASEhIQ2Vm4iIiIi0VOlLIPkG+O3GraIcSJ4KAVFQsKcq7hsKfSdD3ynQplOjpio1Kzxawccbs0lOzWRzdpEjHuLnyTVxEVwTF0GHtrUXDhN6hTIyJoQ1GfnkFZcS7Gtu2dMKKRGRlq9eRanY2Fg2bNjA999/79i6N2zYMNq0adNQ+YmIiIhIS2O3mSukqu0kdDxWsAcsrtBjrLk9r9Olp27rkyZhtxus3HmI5NRMUrbkUl5pNi13c7FweUwIE+MjuLhLUL2KSi5WC4M76WcKEZHzTb2KUj/99BMlJSX8+OOPfPvttzz99NNcd911dO3alWHDhjF06FCGDh1KcLCaS4qIiIhIDfasdN6yV5Okt82ilDQLmflHeX9dFu+vyyK74Jgj3j3El0kDIrmybziB3u5NmKGIiJxr6t3o3MfHh4SEBBISEgAoLi7mhx9+YNmyZdx2222UlJTo9D0RERERqV7FMdi6pG5jK4+dfow0qNIKG19sySU5NZMVOw454n6erlzZN5yk+Eh6hfthUZN5ERE5A2d8+p7dbmft2rUsX76cb7/9lhUrVnDkyBGioqLOZn4iIiIicq4zDMhJM5uWb1oEpYV1u86nXYOmJdUzDINN2YUkp2bycdo+ikur/sH5os5tmRgfwaieIXi6aTuliIj8PvUqSq1Zs4bly5ezfPlyfvzxR0pKSoiIiGDYsGG8+OKLDB8+nA4dOjRQqiIiIiJyTjlyCDYlm8Wo/Zur4n4RZmGqvITq+0pZzFP4ooY0VqYC5B8p56MNZtPybbnFjnh4QCtH0/LIQK8mzFBERFqaehWlLrjgAkJCQhg+fDhz585l+PDhdOqk009ERERE5Di7DXZ+AxvegW2fgb3CjLt4QI8roN/1ED0Mtn1y/PQ9C86FqePbwBKeVGPz38FmN1i96xA7svLpXOLCoI5tq208brMbfL/9AItSM1mWvp8Km/lZuLtaSegZQlJ8JEM6tcGqk/BERKQB1KsotXXrVrp163bWXvz777/nmWeeYd26deTk5LB48WKuuuoqx/OzZ89mwYIFZGZm4u7uTlxcHI8//jiDBg1yjMnPz+cPf/gDS5cuxWq1MmHCBF544QV8fHzOWp4iIiIichqHdkLafPOr+KQm5qGx5ul5vSaAV2BVPGac2cg8ZaZz03O/MLMgFTOu8XJvYVI25zBnaTo5haXHIxmE+nsyKzGGhF6hAOw+eIRF6zL5YF02uUWljmt7h/uTFB/BuNhw/L3cmiB7ERE5n9SrKHU2C1IAR44cITY2lptvvpnx48ef8nzXrl3597//TceOHTl27BjPPfccl19+OTt27CAoKAiAKVOmkJOTw7Jly6ioqGDatGncfvvtzJ8//6zmKiIiIiK/UX4E0peY2/P2/FgVb9Ua+kyCvlMgtE/N18eMg+5jzdP4SvabPaSihmiF1O+QsjmHu+atP2VTZG5hKXfNW88Ng6PYmlvMmox8x3MBXm5c3S+ciXGRxIT5NW7CIiJyXqtXUapjx451Grdr1646jRs9ejSjR4+u8fnJkyc7PZ47dy6vvfYaP//8M5dddhlbt24lJSWFtWvXEh8fD8BLL73EmDFjePbZZwkLC6tTHiIiIiJSR4YB2evM7XmbPoDyE72HLNDpUug/FbqNAVePut3P6gLRFzdYuucTm91gztL0art0nYi9tWoPABYLXNIliKT4SEbEBOPhqkKgiIg0vnoVpXbv3k1UVBSTJ08mODi4oXKqVnl5Oa+++ir+/v7ExsYCsGrVKgICAhwFKYARI0ZgtVpZvXo1V199dbX3Kisro6yszPG4qKgIME8UtNvtDfguGo7dbscwjHM2fzk7NA8ENA9Ec0BMZ30elOTBpmQsae9iObDNETZad8CInQKx14J/xMkJnJ3XlTpbvevQSVv2apYUF84fL+tCWEArR0x/XrRc+jtBQPNAap8DTTkv6lWUWrhwIa+//jpz585l9OjR3HzzzYwZMwar1dpQ+fHJJ59w7bXXcvToUUJDQ1m2bBlt27YFIDc395TimKurK4GBgeTm5tZ4zyeeeII5c+acEj9w4AClpaf/i7w5stvtFBYWYhhGg34e0rxpHghoHojmgJjOyjywV+Kx93tabfsAj73LsdgrATBcPSntOIpj3SZQHjYALFYoA/Lyzt4bkHr7JfNQncb1CnLHtbyYvLzi0w+Wc57+ThDQPJDa50BxcdP9fVCvotTEiROZOHEi2dnZvPnmm9x3333ccccdTJ06lVtuuYUuXbqc9QSHDx9OWloaBw8e5L///S9JSUmsXr36d63Ueuihh5gxY4bjcVFREZGRkQQFBeHnd27uo7fb7VgsFoKCgvSHzHlM80BA80A0B8T0u+bBwe1Y0ubBzwuxlOx3hI3weIy+U6Dn1Xh4+lPHDXrSwHbmlbBofRYL12bXaXzniCCCg9s0cFbSXOjvBAHNA6l9Dnh6ejZRVvUsSp0QHh7O3/72N/72t7/x3XffMXv2bJ555hkOHjxI69atz2qC3t7edO7cmc6dO3PBBRfQpUsXXnvtNR566CFCQkLI+82/yFVWVpKfn09ISEiN9/Tw8MDD49T/jbJaref0f6AWi+Wcfw/y+2keCGgeiOaAmOo1D8qKYctHZtPyzJ+q4l5tza15/a7HEtwDS4NlK/VRUlbJpz/vIzk1i3V7DjviVgvYq2sqBViAEH9PBnVsi9WqT/J8or8TBDQPpOY50JRz4oyKUgClpaW8//77vP7666xevZqJEyfi5eV1NnOrlt1ud/SDGjx4MAUFBaxbt464uDgAvvnmG+x2O4MGDWrwXERERETOaYYBe38yC1FbFkPFETNusUKXy6HfVPNXV/emzVMAMAyD1D2HSV6byaebcjhabgPMQtTwbsEkDYikvNLOH9/bYI4/6doTJahZiTG4qCAlIiLNRL2LUqtXr+a1114jOTmZjh07cvPNN/PBBx+c0QqpkpISduzY4XickZFBWloagYGBtGnThscff5xx48YRGhrKwYMH+b//+z+ys7OZOHEiAD169CAhIYHbbruNV155hYqKCqZPn861116rk/dERETk/GW3we4VeGb/Cke7QocLzVPuTijKgY3vmcWo/J1V8Tadod/10Oda8Att/LylWvuLSvlgfRaLUrPIOHjEEe/Y1puJ8ZGM7x9OO7+qrRduLhbmLE13anoe4u/JrMQYEnrpcxURkeajXkWpnj17kpeXx+TJk/nuu+8cp+CdqdTUVIYPH+54fKLP04033sgrr7zCtm3beOuttzh48CBt2rRhwIAB/PDDD/Ts2dNxzbvvvsv06dO57LLLsFqtTJgwgRdffPF35SUiIiJyzkpfAikzsRbtI+BEzC8MLn8cXNzMQtT2L8E4ftKOmzf0utpcFRU5CCxaRdMclFfa+WZbHsmpmSz/Jc+xJc/L3YUr+oSSFB9JXFRrLNV8Xgm9QhkZE8LqXQfZkXWAzhFBDOrYViukRESk2bEYhlHDrvNTWa1WvL29cXV1rfYvwBPy8/PPSnKNpaioCH9/fwoLC8/pRud5eXkEBwdrj/B5TPNAQPNANAfOa+lLIPkGnDdu1aD9YHNVVMxV4OHT0JlJHf26v5jktZks3pDNoSPljnh8VGuS4iMZ0ycUH4+6/buy/iwQ0DwQk+aB1DYHmrImUq+VUm+88UZD5SEiIiIiv4fdBikzqbUgZbHC4OnQ/wZoe/ZPTZYzU1RawdKNZtPyjZkFjniQrwcT+kcwMT6CTkEqHIqISMtTr6LUjTfe2FB5iIiIiMjvsXsFFO2rfYxhNxuXqyDV5Ox2g58yDrEoNYvPN+dQWmFup3S1WrisRzBJ8ZEM7RqEq4tWNIiISMtV56KUYRi1btkTERERkSZQmAVp78GaV+o2vmR/w+YjtdpXcIwP1mWxaF0We/OPOuJdgn1Iio/k6v7htPXxaMIMRUREGk+di1I9e/bkkUceYfz48bi713ws8Pbt25k7dy5RUVH85S9/OStJioiIiMhJKstg26dm0/Kd31CnHlIn+LRrsLSkemWVNpal7yc5NYsfth/gREdXHw9XEmPDSIqPoG9kgP4BWEREzjt1Lkq99NJLzJw5k7vvvpuRI0cSHx9PWFgYnp6eHD58mPT0dH788Ue2bNnC9OnTueuuuxoybxEREZHzT+4msxD180I4drgq3uFi6DsZvn4UinOpvkhlMU/hixrSWNme99L3FZGcmslHadkUHK1wxC/oGEhSfCSje4XSyt2lCTMUERFpWnUuSl122WWkpqby448/snDhQt5991327NnDsWPHaNu2Lf369eOGG25gypQptG7duiFzFhERETl/HDsMm96HDe9AzsaquF+4WYjqOxkCO5oxd5/jp+9ZcC5MHV+Bk/AkWFUEOVM2u8GajHzyiksJ9vVkYHQgLlbn1U2FRyv4eGM2yamZbM4ucsRD/T25Ji6Ca+IiiGrj3dipi4iINEv1anQOcNFFF3HRRRc1RC4iIiIiAmC3Q8Zyc1XU1k/AVmbGrW7QfSz0mwqdhp9aYIoZB0lvm6fwndz03C/MLEjFjGu0t9DSpGzOYc7SdHIKSx2xUH9PZiXGcHlMCCt2HiQ5NYsvtuRSXmk2LXdzsXB5TAgT4yO4uEvQKQUsERGR8129i1IiIiIi0kAO74G0+ZD2LhRmVsXb9TILUb0ngneb2u8RMw66j8W+ewVF2b/iF94Va4cLtULqd0jZnMNd89afsikyp7CUO+etJ9DLnfyj5Y549xBfJg2I5Mq+4QR619yLVURE5HynopSIiIhIU6o4Zq6G2vAOZHxXFff0h95J0O96CI2F+jTBtrpAh4so9eqKX3AwWK1nP+/zhM1uMGdpeq2t5POPluPr4cJV/SJIio+kV7ifmpaLiIjUgYpSIiIiIo3NMGDfBnN73qb3oayw6rmOw8xVUd2vADfPJktRTGsy8p227NXk31P6M7RrcCNkJCIi0nKoKCUiIiLSWI4cgk3JZjFq/+aquH976DcFYq+D1lFNl584yT9SzqLUzNMPBKfT9URERKRu6l2UqqysZP78+YwaNYp27do1RE4iIiIiLYfdBju/MbfnbfsM7MeLFy4eZv+nftdDh0u0xa6ZsNkNvt9+gEWpmSxL30+FrbaNe1WCfbWqTUREpL7qXZRydXXlzjvvZOvWrQ2Rj4iIiEjLcGin2bA87T0oPukkvNC+ZiGq9zXQqnWTpSfOdh88wqJ1mXywLpvcoqrter3C/Nibf5Ti0spq+0pZgBB/TwZGBzZariIiIi3FGW3fGzhwIGlpaURFaXm5iIiInCfsNtizEkr2g087iBpy6ol25UcgfYm5KmrPiqp4q0DoM8ncohfSu3HzlhodLa/k8025LEzNZE1GviMe4OXG1f3CmRgXSUyYn+P0PQs4FaZOtDKflRiDi1WNzUVEROrrjIpSd999NzNmzCAzM5O4uDi8vb2dnu/Tp89ZSU5ERESkWUhfAikzoeikFU9+YZDwFPRIhKxUsxC1+UMoLz4+wAKdLzOblncbDa4eTZK6ODMMgw2ZBSxKzWTpxhxKyioB83DDS7oEkRQfyYiYYDxcqwqOCb1Cefn6/sxZmu7U9DzE35NZiTEk9Apt9PchIiLSEpxRUeraa68F4I9//KMjZrFYMAwDi8WCzWY7O9mJiIiINLX0JZB8A/x281ZRDiRPBd8w5+15rTuY2/NirwP/iMbMVGpxoLiMxRuySE7NYkdeiSPePtCLpPgIxvePICygVY3XJ/QKZWRMCGsy8skrLiXY19yypxVSIiIiZ+6MilIZGRlnOw8RERGR5sduM1dIVdtN6HiseB+4eEKvq81iVPshalreTFTa7Cz/5QDJqZl8sy2PSrv5mXm6WRnTO5Sk+EgGdgjEWsfCkovVwuBObRoyZRERkfPKGRWl1EtKREREzgt7Vjpv2atJ0lvQLaHh85E62ZFXwqJ1mXy4PpsDxWWOeN/IACYNiGRsn1D8PN2aMEMRERGBMyxKAbzzzju88sorZGRksGrVKqKionj++eeJjo7myiuvPJs5ioiIiDS+smLYtKhuY8tLTj9GGlRJWSWf/ryP5NQs1u057Ii38XZnfP9wJsZH0rWdbxNmKCIiIr91RkWpl19+mUceeYR7772Xxx9/3NFDKiAggOeff15FKRERETk3GQbs/Qk2zIMti6HiSN2u82nXsHlJtQzDIHXPYZLXZvLpphyOlpv/T+pitTC8WxAT4yO5tHswbi7aTikiItIcnVFR6qWXXuK///0vV111FU8++aQjHh8fzwMPPHDWkhMRERFpFEU5sPE9sxiVv7MqHtgJjhwwV01V21fKYp7CFzWksTIVYH9RKR+sz2JRahYZB6sKhx3bepM0IJLx/cIJ9vNswgxFRESkLs640Xm/fv1OiXt4eHDkSB3/RVFERESkKVWWw/YvYP07sGMZGHYz7uZ9vGn5VIgcBFuXHj99z4JzYep4c+yEJ8Hq0sjJtxw2u1GnE+3KK+18s20/yalZLP8lj+M9y/Fyd+GKPmbT8rio1lgsOg1PRETkXHFGRano6GjS0tJOaXiekpJCjx49zkpiIiIiIg0ib6u5ImrjAjh6sCoeeQH0nwoxV4GHT1U8ZhwkvW2ewndy03O/MLMgFTOu0VJvaVI25zBnaTo5haWOWKi/J7MSY0joFQrAL7nFJKdmsnhDNvlHyh3jBnRozcT4SMb2DsXb44zbpIqIiEgTOqO/wWfMmME999xDaWkphmGwZs0a3nvvPZ544gn+97//ne0cRURERH6f0kLY/CFseAey11XFfdpB7HXQ73po26Xm62PGQfex5ml8JfvN66KGaIXU75CyOYe75q0/ZVNkbmEpd81bz3UDI9mSU8zGzALHc0G+HkzoH8HE+Ag6BfkgIiIi57YzKkrdeuuttGrVir///e8cPXqUyZMnExYWxgsvvMC11157tnMUERERqT+7HfasMFdFpX8MlcfMuNUVuiaY2/M6jwCXOv7vkNUFoi9uuHzPIza7wZyl6dV26ToRm78mEwBXq4XLegSTFB/J0K5BuKppuYiISItxxmudp0yZwpQpUzh69CglJSUEBwefzbxEREREzkxhFqS9B2nz4PDuqnhQd3NFVJ9rwSeoydITWJOR77RlrybXX9Cee0d0pa2PRyNkJSIiIo3tjIpSr7/+OsOHDyc6OhovLy+8vLzOdl4iIiIidVdZBr98ZjYt3/kNjvU27r7Qe4K5Kio8DtQEu1nYV3C0TuMGdAhUQUpERKQFO6Oi1BNPPMFtt91GeHg4Q4cOZejQoQwbNozOnTuf7fxEREREapa7ydye9/NCOHa4Kh51kdm0vEciuHs3XX7iZMu+QhalZrFoXWadxgf7ejZwRiIiItKUzqgotX37drKzs1m+fDnff/89zz77LHfccQehoaEMGzaMefPmne08RUREREzHDsOm982m5Tkbq+K+YdB3svnVplPT5SdOCo6Ws2TjPhauzWTLviJH3GoBe3VNpQALEOLvycDowMZJUkRERJrEGfeUCg8PZ8qUKVx99dX88MMPvPfee7z77rssWLBARSkRERE5u+x2yPjOXBW1dSnYysy41c08Fa/fVOg0XKfhNRN2u8GKnQdJTs3iiy25lFfaAXBzsXB5TAhJAyI5UlrJPfPXAzg1PD+xwXJWYgwuVm23FBERacnOqCj15Zdfsnz5cpYvX86GDRvo0aMHQ4cO5f333+eSSy452zmKiIhIS2S3wZ6VULIffNpB1JBTi0qH90DafPOrcG9VPLinuT2vdxJ4t2ncvKVGmflHWbQuiw/WZZFdcMwR7x7iy6QBkVzZN5xAb3dH/GVrf+YsTXdqeh7i78msxBgSeoU2au4iIiLS+M6oKJWQkEBQUBD3338/n332GQEBAWc5LREREWnR0pdAykwo2lcV8wuDhKegy0jY9imsf9tcHXWChz/0mWieoBfaV03Lm4nSChtfbMklOTWTFTsOOeJ+nq5c1S+cpPhIeob5Yanm80roFcrImBDWZOSTV1xKsK+5ZU8rpERERM4PZ1SUmjt3Lt9//z1PP/00L7zwgqPR+bBhw+jatevZzlFERERakvQlkHwDzpu2MAtUyVPBzQsqTjqdreMwc3te97Hg1qoxM5UaGIbBpuxCklMz+ThtH8WllYBZJ7ywU1uSBkRyeUw7PN1Ov53SxWphcCetdhMRETkfnVFR6t577+Xee+8FYNOmTXz33XekpKQwffp0goODycrKOps5ioiISEtht5krpH5bkDpZxVHwizBXRPWdDK2jGi09qV3+kXIWb8hmUWom23KLHfHwgFZMjI9gQv8IIgO9mjBDEREROZeccaNzwzDYsGEDy5cv59tvv+XHH3/EbrcTFBR0NvMTERGRlmTPSuctezW56mXoqD6VzYHNbvD99gMsSs1kWfp+KmxmQdHd1croXiEkxUcyuGMbrNpyJyIiIvV0RkWpxMREVqxYQVFREbGxsQwbNozbbruNSy65RP2lREREpHr5u+Cnl+s29khew+Yip7X74BEWrcvkg3XZ5BZVNSLvE+HPxPhIxvUJw9/LrQkzFBERkXPdGRWlunfvzh133MHFF1+Mv7//2c5JREREWoryI2YPqQ3zYM+Pdb/Op13D5SQ1OlpeyeebclmYmsmajHxHvLWXG1f1C2diXCQxYX5NmKGIiIi0JGdUlHrmmWfOdh4iIiLSUhgGZK+DDe/Apg+g/ETvIQt0uhT2rYdjBVTfV8pinsIXNaTx8j3PGYbBhswCFqVmsnRjDiVlZtNyqwUu6RpEUnwkl/UIxsP19E3LRUREROrjjHtKfffddzz77LNs3boVgJiYGB588EEuvvjis5aciIiInENK8uDnheaqqAPbquKtO0Df66HvdeAfcdLpexacC1PHexIlPAlWFUB+D5vdYPWuQ+zIyqdziQuDOrbF5Tc9nw4Ul7F4QxbJqVnsyCtxxNsHepEUH8GEuAhC/XXaoYiIiDScMypKzZs3j2nTpjF+/Hj++Mc/ArBixQouu+wy3nzzTSZPnnxWkxQREZFmylYJO5aZhahfU8BurrLBtRXEXGmeoBd1IVitVdfEjIOkt81T+E5ueu4XZhakYsY17ntoYVI25zBnaTo5hSf6QGUQ6u/JrMQYRvRox/JfDrAwNZNvt+VRaTeLgp5uVsb0DiUpPpKBHQLVtFxEREQaxRkVpR5//HGefvpp7rvvPkfsj3/8I3PnzuUf//iHilIiIiIt3cHtZiFq43tQsr8qHh5vFqJ6jQfPWvpOxoyD7mPN0/hK9ps9pKKGaIXU75SyOYe75q0/ZWNkTmEpd85bj5+nK0WllY54v/YBJMVHckWfUHw91bRcREREGtcZFaV27dpFYmLiKfFx48bx17/+9XcnJSIiIs1QWTFs+cgsRmX+VBX3agux15rFqOAedb+f1QWite3/bLHZDeYsTa+2U9cJRaWVtPF2Y0JcJBPjIujSzrfR8hMRERH5rTMqSkVGRvL111/TuXNnp/hXX31FZGTkWUlMREREmgHDgL0/mYWoLYuh4ogZt1ihy+VmIarLKHB1b9o8hTUZ+Sdt2avZC9f246IuQY2QkYiIiEjtzqgodf/99/PHP/6RtLQ0hgwxT8dZsWIFb775Ji+88MJZTVBERESaQHGuuTVvwzw4tKMq3qazWYjqcy34hTZdfuJkf1Ep767eU6exh46UN3A2IiIiInVzRkWpu+66i5CQEP71r3+RnJwMQI8ePVi4cCFXXnnlWU1QREREGkllOWz/wixEbV8Ghs2Mu3lDr6uh31SIHAQWNcFuDsor7XyzbT/JqVks/yUPe2379k4S7OvZsImJiIiI1FG9i1KGYbBjxw66du3K8uXLcXU9o7qWiIiINBd5W483LV8ARw9WxSMvMFdF9bwKPNR7qLn4JbeY5NRMFm/IJv+kVU/xUQFszztC0bGKavtKWYAQf08GRgc2Wq4iIiIitalXRSkjI4Nx48aRnp4OQEREBB988AHx8fENkpyIiIjUk90Gu1fgmf0rHO0KHS6s/kS70kLY/CFseAey11XFfdpB7HVmMaptl8bLW2pVVFrB0o37SE7NYmNmgSMe7OvBhLgIJsZF0DHIx3H6ngWcClMn1rbNSozBxaqVbiIiItI81Kso9eCDD1JZWcm8efPw9PTk2Wef5fbbb2f9+vUNlZ+IiIjUVfoSSJmJtWgfASdifmGQ8BTEjAO7HfasMFdFpX8MlcfMMVZX6JpgFqI6jwQXrYJuDux2g58yDrEoNYvPN+dQWmEHwNVq4bIewUwaEMklXYJwdbE6rknoFcrL1/dnztJ0p6bnIf6ezEqMIaGX+oCJiIhI81Gv/+v88ccfef/997nooosAuOCCC4iIiODIkSN4e3s3SIIiIiJSB+lLIPkG+O3GraIcM95rAmSnwuHdVc+17Qb9p0KfSeAT3JjZSi32FRzjg3VZLFqXxd78o454l2AfJg2I5Kp+4bT18ajx+oReoYyMCWH1roPsyDpA54ggBnVsqxVSIiIi0uzUqyiVl5dHly5VS/lDQ0Np1aoVeXl5REdHn/XkREREpA7sNkiZySkFKaiKbX7f/NXdF3pPMJuWh8epaXkzUVZpY1m62bT8h+0HMI5/bL4eriT2DSMpPpLYCH8sdfy8XKwWLujYho4+NoKD22BVQUpERESaoXoVpSwWCyUlJbRq1coRs1qtFBcXU1RU5Ij5+fmdvQxFRESkdntWQtG+04+7aAZc8gC4a3Vzc7FlXyGLUrP4KC2bgqMVjvgFHQNJio9kdK9QWrlX0xNMREREpAWoV1HKMAy6du16Sqxfv36O31ssFmw229nLUERERGqXv7Nu49r1VEGqGSg4Ws6SjftYuDaTLfuq/lEv1N+Ta+IiuCYugqg2+pxERESk5atXUerbb79tqDxERESkPux2yPiuqml5Xfi0a9icpEZ2u8GKnQdJTs3iiy25lFeaTcvdXayM7NmOpPhILuqsvk8iIiJyfqlXUWro0KENlYeIiIjUxeE9kDYf0t6FwsyquNUV7JU1XGQxT+GLGtIoKUqVzPyjLFqXxQfrssguOOaIdw/xNZuW9w2ntbd7E2YoIiIi0nR05rOIiEhzV3EMtn0K6982V0ed4OEPfSZCv+uhYC8k33j8iZMbnh9feZPwJFjVm6gxlFbY+GJLLgvXZrJy5yFH3M/Tlav6hZMUH0nPML86Ny0XERERaalUlBIREWmODANy0szteZsWQWlh1XMdh5mn53UfC27HDx8J6wdJb5un8J3c9NwvzCxIxYxrzOxbJJvdYE1GPnnFpQT7ejIwOtCx3c4wDDZlF5KcmsnHafsoLjVXrVkscGGntiQNiOTymHZ4uqkwKCIiInKCilIiIiLNyZFDsCnZLEbt31wV94+EvlOg72RoHVX9tTHjoPtY7LtXUJT9K37hXbF2uFArpM6ClM05zFmaTk5hqSMW6u/JjJFdKSqtZFFqJttyix3PhQe0YmJ8BBP6RxAZ6NUUKYuIiIg0eypKiYiINDW7DXZ+AxvegW2fgb3CjLt4QI9Ec3te9FCwWk9/L6sLdLiIUq+u+AUH1+0aqVXK5hzumrfeaVMkQE5hKQ++/7PjsburldG9QkiKj2RwxzZY1bRcREREpFYqSomIiDSVQzuPNy2fD8UnbbkLjTW35/W+Blq1brr8BJvdYM7S9FMKUidzc7Hw9ytiuCo2HH8vt0bLTURERORcV+ei1Pjx4+t80w8//PCMkhEREWnxyo9A+hJze96eH6virVpDn0nmFr3QPk2Xnzj5YfsBpy171amwGXQN9lVBSkRERKSe6lyU8vf3d/zeMAwWL16Mv78/8fHxAKxbt46CgoJ6Fa9ERETOC4YB2evM7XmbPoDyE72HLND5MnN7Xrcx4OrRpGmKyTAM1u8tYFFqJos3ZNfpmrzi2gtXIiIiInKqOhel3njjDcfvZ86cSVJSEq+88gouLmbzVJvNxt13342fn9/Zz1JERORcVJIHPy80V0Ud2FYVb93BLETFXgf+EU2Wnjg7UFzG4g1ZJKdmsSOvpF7XBvt6NlBWIiIiIi3XGfWUev311/nxxx8dBSkAFxcXZsyYwZAhQ3jmmWfOWoIiIiLnFFsl7FhmFqJ+TQF7pRl3bQUxV5rFqKgL1YC8mai02fn2lwMkp2by7bY8Ku1m9yhPNytjeodyTf8IZiRvZH9RabV9pSxAiL8nA6MDGzVvERERkZbgjIpSlZWVbNu2jW7dujnFt23bht1uPyuJiYiINBt2G+xZCSX7wacdRA0xT7k72cHt5va8jQvMcSeEx5uFqF7jwdMfaR525JWwaF0mH67P5kBxmSPer30ASfGRXNEnFF9Ps0fU7HEx3DVvPRZwKkydOFtvVmIMLjppT0RERKTezqgoNW3aNG655RZ27tzJwIEDAVi9ejVPPvkk06ZNO6sJioiINKn0JZAyE4pOOh3PLwwSnoJOw2HLR+aqqMyfqp73agux15rFqOAejZ6yVK+krJJP/3979x0eZZm2f/w7M6mQRkIqCR2EGCAJAQSVJmqQKiWAgrvWFVZ2XX3VV1dl+b2ru25T165bXWxBFgVLlBVcBRUIoYdOgIQ0IJBG6szz++OBCZEWMJlJOT/H4SG5p+QKOUkyV+77erbkkpqew4aDx53rHf28mJIYzfSB0fQK9z/rcclxkbwyO5GFyzPrDT2PCPRhwYRYkuMiXVK/iIiISGtzWU2pP/zhD0RERPDHP/6RvLw8ACIjI3nooYd48MEHG7VAERERt8lcBqm3wfcPbpXkQuocsHmD/dQuG4sVet1gNqJ63QgeXi4vV85mGAbrDxwnNT2bj7fkUVFjB8BmtTDqilCmJ8Uwuk8YnrYLH6dMjovk+tgI1mUVUVhaSZi/eWRPO6RERERELt9lNaWsVisPP/wwDz/8MCUlJQAacC4iIq2Lw27ukDrnJKFT7FUQ3AMS50D/mRCgHTPNRUFJJe9vyOH9DTlkHS13rncPbU9KUgxTEjoRFnBpw8ltVgtDe4Q0dqkiIiIibdZlNaXOpGaUiIi0Sge/qX9k73wmPAfdhjd5OXJx1bUOVu4sIDU9hy93FXJqZjntvGyM7x/JjEExJHbugMWi3U0iIiIizcFlNaUKCgr4n//5H7744gsKCwsxjPq/Rbbb7Y1SnIiIiFsU7oBv/tyw+5YVNm0tclG78ktJTc9m6cbDFJVXO9cHde3A9KQYxvWLpL33D/49nIiIiIg0ssv6Ce3HP/4xhw4d4oknniAyMlK/cRQRkZavshi2/du8gt7hDQ1/nF9409Uk51VSWcPyzbmkrs9mc06xcz3M35upA82h5d1D/dxYoYiIiIhczGU1pVavXs3XX39NfHx8I5cjIiLiQg4HHFxjXj0v80OorTDXrR7msPJD30LFcc49V8piXoWvyzBXVtymORwG32UdY3F6Dp9szaOq1gGAh9XCdX3DmDEohuG9QvG4yNByEREREWkeLqspFRMTc9aRPRERkRajOAc2vQObFsHxA3XrHa84NbR8BviFnXH1PQv1G1Ondggn/xasNtfV3crYHUaDrmZ3+EQFSzbksHhDNtlFFc71XmF+zBgUw+SETnT083Zl6SIiIiLSCC6rKfXcc8/xv//7v7z22mt07dr1st/5V199xe9//3s2bNhAXl4eS5cuZfLkyQDU1NTw+OOP88knn7B//34CAwMZM2YMv/3tb4mKinI+R1FREfPnz2f58uVYrVamTp3K888/j5+ftuyLiMgZaqtg1yfmrqi9X+BsMnn5Q7+pkDAHOg2EM4+kx06ElDfNq/CdOfQ8IMpsSMVOdOmH0Jqkbctj4fJM8oornWuRgT4smBBLclwkVbV2VmQW8N76bFbvPcrp34X5e3swIT6KlKQYBkQHaoSAiIiISAt2WU2pGTNmcPLkSXr06EG7du3w9PSsd3tRUVGDnqe8vJwBAwZwxx13MGXKlHq3nTx5koyMDJ544gkGDBjA8ePH+fnPf87EiRNJT0933u/WW28lLy+PFStWUFNTw+23384999zD22+/fTkfmoiItDb5W81G1Jb3Th3FO6XLNeauqL4TwKv9+R8fOxH6jDOvxldWYM6Q6jJMO6R+gLRtecxdlHHWocj84kruXZTBqCtC2Zh9ghMna5y3De0eQsqgaJKvjMTXS3/3IiIiIq3BZe+Uagxjx45l7Nix57wtMDCQFStW1Ft78cUXGTx4MIcOHaJz587s2LGDtLQ01q9fT1JSEgAvvPACN910E3/4wx/q7agSEZE2pOI4bH3fHFqet7lu3T8K4m8x/wvp0fDns9qg27WNX2cbZHcYLFyeec4pXafXVu06Apg7p6YNjGbawGi6hFygcSgiIiIiLdJlNaV+9KMfNXYdDVJcXIzFYiEoKAiAb7/9lqCgIGdDCmDMmDFYrVbWrl3LzTfffM7nqaqqoqqqyvl2SUkJAA6HA4fD0XQfQBNyOBwYhtFi65fGoRwItOEcGA7I+grLpkWw4yMsdvPrvGH1hD7jMOJvhe6j6nY4teK/n+acgbX7j9U7snc+j9zYm7uu7e6cMdUcP5bmrjnnQFxDGRBQDsSkHMiFMuDOXDS4KVVSUkJAQIDzzxdy+n6NqbKykkceeYRZs2Y5nz8/P5+wsLB69/Pw8CA4OJj8/PzzPtdvfvMbFi5ceNb6kSNHqKy8+A/KzZHD4aC4uBjDMLBaddWhtko5EGh7ObCV5OC7aym+u/6Nraxu7lNNyBVU9JlGRc/xGL7B5uLRY26q0rWacwbW7ylo0P3aW2o4dvRIE1fTujXnHIhrKAMCyoGYlAO5UAZKS0vdVNUlNKU6dOhAXl4eYWFhBAUFnXOwqGEYWCwW7HZ7oxZZU1NDSkoKhmHwyiuv/ODne/TRR3nggQecb5eUlBATE0NoaGiTNNRcweFwYLFYCA0N1ReZNkw5EGgjOaipgJ0fYdn0Fpas/zqXDe8A6DcdI342tsgB+FkstMXLXjS3DFTW2Enbns/i9MN8u79hjcGe0aGEhYU0cWWtW3PLgbieMiCgHIhJOZALZcDHx8dNVV1CU2rlypUEBwc7/+yqq92cbkgdPHiQlStX1msaRUREUFhYWO/+tbW1FBUVERERcd7n9Pb2xtv77EtHW63WFv0P1GKxtPiPQX445UCglebAMCBvE2T8y5wXVVVcd1v3kZAwB0ufceDpi67H5v4MGIbB1sPFpKZn8+GmXEora523eXlYqa499zZxCxAR6MOQ7h2xWvWZ/KHcnQNxP2VAQDkQk3Ig58uAOzPR4KbUiBEjyMrKolu3bowcObIJS6pzuiG1Z88eVq1aRUhI/d+YDh06lBMnTrBhwwYGDhwImA0zh8PBkCFDXFKjiIhcJoe9YVe0Kz8GW1PNK+gVbKtbD4yB+FvNoeUduriubrmgY2VVfLApl8Xp2ezMr9sKHt3Bl+kDY5g6sBPbDhczd1EGQL2B56dbUAsmxDpnSYmIiIhI63VJg8579OhBly5dGDVqFKNHj2bkyJFER0df9jsvKytj7969zrezsrLYtGkTwcHBREZGMm3aNDIyMvjoo4+w2+3OOVHBwcF4eXnRt29fkpOTufvuu3n11VepqanhvvvuY+bMmbrynohIc5a5DNIegZK6GVAEREHyMxA70WxY7VtpXj1v5yfgqDHvY/OGvhMgYTZ0GwH6TV+zUGt38PWeo6SmZ/OfHQXU2M1Wk5eHlbFxEaQkxTC0e4hz51N0h3a8MjuRhcsz6w09jwj0YcGEWJLjIt3ycYiIiIiIa11SU2rlypV8+eWXfPnll7zzzjtUV1fTvXt3Ro8ezahRoxg1ahTh4eENfr709HRGjRrlfPv0nKcf/ehH/OpXv2LZsmUAxMfH13vcqlWrnLu13nrrLe677z6uu+46rFYrU6dO5c9//vOlfFgiIuJKmcsg9Tbq75EBSvLM9b4TICcdSs9oWEXGm42oftPAt4Mrq5ULOHC0nNT0bJZk5FBQUndV2/7RgUxPimFi/ygC23me87HJcZFcHxvBuqwiCksrCfP3YXC3YO2QEhEREWlDLqkpNXLkSGczqLKykm+++cbZpPrnP/9JTU0Nffr0Yfv27Q1+PsMwznv7hW47LTg4mLfffrtB709ERNzMYTd3SH2/IQV1azvMX0jg2wH6z4SEWyGin6sqlIs4WV3LJ1vzSU3PZl1WkXO9QztPbk6IZnpSNH0jG3bREJvVwtAeGmYuIiIi0lZdUlPqTD4+PowePZprrrmGUaNG8emnn/Laa6+xc+fOxqxPRERak4Pf1D+ydz4jHoFrHwSPsy9KIa5nGAYZh06wOD2b5ZtzKa82r7JrtcDw3qGkJMVwXd8wvD3OMRNMREREROQ8LrkpVV1dzXfffceqVav48ssvWbt2LTExMQwfPpwXX3yRESNGNEWdIiLSGhzd3bD7deythlQzUFhaydKMw6SmZ7PvSLlzvUtIO1KSYpiS2InIQF83VigiIiIiLdklNaVGjx7N2rVr6datGyNGjOAnP/kJb7/9NpGRGkgqIiLnYa+FvSvMq+ft+qRhj/Fr+HxCaVw1dgdf7jpCano2K3cWYneYxyp9PK3c1C+SGUkxDO4WjMWi2U8iIiIi8sNcUlPq66+/JjIy0nnlvREjRhASolkQIiJyDkd2w6ZFsPldKCuoW7d61l1N7ywW8yp8XYa5pESps7ewjMXp2SzJOMzRsrqh5Qmdg0hJimF8/0j8fc49tFxERERE5HJcUlPqxIkTfP3113z55Zc888wzzJo1i969ezNixAhnkyo0NLSpahURkeauqhS2f2Duisr+rm69XUcYMNO8gt7RPaeuvgf1B56f2nmT/FuwajaRK5RV1fLxllzeW59NxqETzvWOfl5MSYxm+sBoeoX7u69AEREREWnVLqkp1b59e5KTk0lOTgagtLSU1atXs2rVKn73u99x66230qtXL7Zt29YkxYqISDNkGHDoO7MRtX0p1JyaPWSxQq8bIGGO+X8PL3M9rC+kvGlehe/MoecBUWZDKnai6z+GVsTuMFi7/xh7c4roWWZjSPeO2Kx1R+0Mw2D9geOkpmfz8ZY8KmrMoeU2q4VRV4SRkhTNqD5heNqs7voQRERERKSNuOyr74HZpAoODiY4OJgOHTrg4eHBjh07Gqs2ERFpzkryYPM7ZjOqaF/dekhPc0dU/5kQcJ6Zg7EToc8482p8ZQXmDKkuw7RD6gdK25bHwuWZ5BVXnlrJIjLQhwUTYomP6cCSjBwWp2dz4NhJ52O6h7Z3Di0P8/dxT+EiIiIi0iZdUlPK4XCQnp7Ol19+yapVq1izZg3l5eV06tSJUaNG8dJLLzFq1KimqlVERNytthr2fAYZ/zKHlxsOc92zPcTdbO6KihkCDRmCbbVBt2ubtt42JG1bHnMXZdQ7EAmQV1zJvYsysFB3WLK9l43x/aNIGRRNYucOGlouIiIiIm5xSU2poKAgysvLiYiIYNSoUTz77LOMHDmSHj16NFV9IiLSHBTuMHdEbX4XTh6tW+881NwVFTsZvP3cVl5bZ3cYLFyeeVZD6kwGkNQliBmDOnNTv0jae/+gzdIiIiIiIj/YJf1E+vvf/55Ro0bRu3fvpqpHRESai8pi2LbEbEYd3lC37hcOA2aZzaiOvdxXnzityyo648je+T14Qx+G9tBVc0VERESkebikptRPfvKTpqpDRESaA4cDDq42G1GZy6C2wly3ekDvZPN4Xs8xYNMum+bA4TD4LusYf/p8d4PuX1h68caViIiIiIir6FWFiIhAcQ5segc2LYLjB+rWQ/vUDS33C3VbeVLf4RMVLNmQw+IN2WQXVTT4cRpkLiIiIiLNiZpSIiJtVW0V7PzY3BW1byXOMdhe/tBvqrkrqtPAhg0tlyZXWWNnRWYBqenZrN57FOPUp8vf24NxAyJZsb2AovLqc86VsgARgT4M7hbsypJFRERERC5ITSkRkdbEYYcDa/A5vBtO9oauV5tXuTtT/lazEbXlPag4Xrfe9VpzV1TfieDVzrV1y3ltzy0mdX02H2zKpbiixrk+tHsIKYOiSb4yEl8vGyN7m1ffO/Mqe2A2pAAWTIjFZlWDUURERESaDzWlRERai8xlkPYI1pJcgk6vBURB8jPQ7VrY+j5s/Bfkba57TEAniL/F/C+4uxuKlnM5cbKaDzflkpqezfbcEud6ZKAP0wZGM31gDJ1D6jcOk+MieWV2IguXZ9Ybeh4R6MOCCbEkx0W6rH4RERERkYZQU0pEpDXIXAapt8H3D2+V5ELqHHNQuaPWXLN6Qp9x5vG8HqPO3kklbmF3GKzZe5TU9Gw+315Atd0BgJfNyvVXhpOSFMM1PTtecLdTclwk18dGsHb/UfbmHKFndChDul/4MSIiIiIi7qKmlIhIS+ewQ9ojnNWQqnefWgi7EhJvg37ToX2Iy8qTC8suOsniDTks2ZDD4RN1Q8v7RgYwIymaSfGd6NDeq8HPZ7NauKp7CN397ISFhWBVQ0pEREREmik1pUREWrqD35g7oi5m7G+h2/Cmr0cuqrLGTtq2fFLTs/lm3zHneqCvJ5Pjo5ieFENcp0A3VigiIiIi0vTUlBIRaakMA3I3wld/aNj9ywqbth65IMMw2JJTTGp6Nss251JaaR6ntFjgmp4dmZ4Uww2x4fh46jiliIiIiLQNakqJiLQ05cdga6p5Bb2CbQ1/nF9409Uk53WsrIoPNuWyOD2bnfmlzvXoDr5MHxjD1IGdiO6gqx2KiIiISNujppSISEvgsMO+lebV83Z+Ao4ac93mDX0nwP5VcLKIc8+VsphX4esyzJUVt2m1dgdf7zGHlv9nRwE1dvPz4uVhZWxcBClJMQztrnlPIiIiItK2qSklItKcHdsHm96CTe9A6RlzoyLjIWE29JsGvh3OuPqehfqNqVNNj+Tf6ip7P4DdYbAuq4jC0krC/H0Y3C34nFe0O3C0nNT0bJZk5FBQUuVc7x8dyPSkGCb2jyKwnacrSxcRERERabbUlBIRaW6qy80m08Z/wcE1deu+wdB/BiTcChH96j8mdiKkvGlehe/MoecBUWZDKnaia2pvhdK25bFweSZ5xZXOtchAHxZMiCU5LpKT1bV8stUcWr4uq8h5nw7tPLk5IZrpSdH0jQxwR+kiIiIiIs2amlIiIs2BYUBOutmI2vZvqD49e8gCPa+DhDlwxVjw8D7/c8ROhD7jcBxYQ8nh3QR06o2169XaIfUDpG3LY+6ijLMOReYXV3Lvogyu7hHCpuwTlFfbAbBaYHjvUGYkxTC6bxjeHvq7FxERERE5HzWlRETcqawQNr9rDi0/uqtuvUNX83jegFkQGN3w57PaoOs1VLbrTUBYGFitjV5yW2F3GCxcnnnOKV2n19bsOwZAl5B2pCTFMCWxE5GBvi6rUURERESkJVNTSkTE1ey1sHeF2YjanQaOWnPdwxeunGw2ozoPU0PJzdZlFdU7snc+T47vy+1Xd8Ni0dByEREREZFLoaaUiIirHNkNmxaZO6PKCurWOyVB4hy48mbwCXRffVLP1sPFDbpfiJ+3GlIiIiIiIpdBTSkRkaZUVQrbl5q7orLX1q236wgDZpq7osL6uq8+qaesqpaPt+Ty3vpsMg6daNBjwvx9mrYoEREREZFWSk0pEZHGZhhw6DuzEbV9KdSUm+sWG/S6wWxE9b4RbJ7urVMAMAyD9QeOk5qezcdb8qioqRta7mmzUlXrOOfjLEBEoA+DuwW7sFoRERERkdZDTSkRkcZSkgeb3zGbUUX76tZDepqNqP4zISDSffVJPfnFlSzJyGFxejYHjp10rncPbe8cWp5x8DhzF2UA1Bt4fvqw3oIJsdisOronIiIiInI51JQSEbkQhx0OfmPOgPILhy7DzCvcnVZbDXs+g4x/mcPLjVO7ajzbQ9zNkDAHYoaAZg41C9W1Dr7YUUBqejb/3X0Ex6lOU3svG+P7R5EyKJrEzh2cM6KS4yJ5ZXYiC5dn1ht6HhHow4IJsSTHqckoIiIiInK51JQSETmfzGWQ9giU5NatBURB8jPQsZe5I2rzu3DyaN3tnYeau6JiJ4O3n8tLlnPblV9Kano2Szcepqi82rk+qGsHUpJiuKlfJO29z/0tMTkukutjI1iXVURhaSVh/uaRPe2QEhERERH5YdSUEhE5l8xlkHob9Q9tYTaoUufUX/MLhwGzzGZUx14uK1EurLiihuWbc1mcns3mnLor6YX5ezN1YDTTB0bTPbRhjUOb1cLQHiFNVaqIiIiISJukppSIyPc57OYOqe83pL7vinGQeBv0HAM2fTltDhwOg++yjrE4PYdPtuY5h5R7WC2M6RtOyqBohvcKxcNmdXOlIiIiIiKiV1EiIt938Jv6R/bO56q50O3apq9HLurwiQqWbMhh8YZssosqnOu9w/1ISYphckInOvp5u7FCERERERH5PjWlREROq62CnR/DV39o2P3LCpq2Hrmgyho7KzLNoeWr9x7FOLWxzd/bgwnxUaQkxTAgOtA5tFxERERERJoXNaVERPK3mkPLt7wHFccb/ji/8KarSc5re24xqeuz+WBTLsUVNc71od1DSBkUTfKVkfh62S7wDCIiIiIi0hyoKSUibVPFcdj6Pmz8F+RtrlsP6AQDZppNqrJCzj1XymJeha/LMFdV2+adOFnNh5tySU3PZntuiXM9MtCH6QOjmTYwhs4h7dxYoYiIiIiIXCo1pUSk7XA4IOtLs+G04yOwV5nrVk/oMw4S5kCPUWC1QWT8qavvWajfmDp1FCz5t+b95LLZHQbrsoooLK0kzN+Hwd2CsVkt9W5fs/coqenZfL69gGq7ObTcy2bl+ivDmZEUw9U9O9Z7jIiIiIiItBxqSolI63f8IGx6Cza9DcXZdevhcWYjqt90aB9S/zGxEyHlTfMqfGcOPQ+IMhtSsRNdU3srlbYtj4XLM8krrnSuRQb6sGBCLLGRgby/IZv3N+SQe8btfSMDmJEUzaT4TnRo7+WOskVEREREpBGpKSUirVNNhbkbauO/IOu/des+gWYTKmEORA6ACw3Bjp1o7qA6+I051Nwv3Dyypx1SP0jatjzmLso462BkXnEl9y7KqLcW6OvJ5PgopifFENcp0HVFioiIiIhIk1NTSkRaD8OA3I3m8byt70NVcd1t3Ueajag+48DTt+HPabVBt2sbvdS2yu4wWLg885yTus50Tc8QUgZ15obYcHw81QQUEREREWmN1JQSkZav/Jh55byNi6Bwe916YGdIuBUGzIIOXdxXnzityyqqd2TvfH46qhdDe4Rc9H4iIiIiItJyqSklIi2Tww77VprH83Z+Ao4ac93mbR67S5gNXYeD1ereOgWAWruDr/cc5bn/7G7Q/QtLL964EhERERGRlk1NKRFpWY7tOzW0/B0oPWMAeWS82YjqNw18O7itPKkv62g5i9OzWZKRQ0FJVYMfF+bv04RViYiIiIhIc6CmlIg0f9XlkLnM3BV1cE3dum8w9J9hHtGL6Oe++qSek9W1fLwlj8XpOaw7UORc79DOk0nxnfhoSy7HyqrPOVfKAkQE+jC4W7DL6hUREREREfdQU0pEXM9hv/gV7QwDctLNRtS2f0N1qblusUKP68xdUVeMBQ9v19cvZzEMg4xDJ1icns3yzbmUV9sBsFpgeO9QZiTFcF3fcLw8rFzVPZi5izKwQL3G1OnrIC6YEIvNeoGrIoqIiIiISKugppSIuFbmMkh7BErOOHoXEAXJz5izoMoKYfO75tDyo7vq7tOhq9mIGnALBHZyedlyboWllSzNOExqejb7jpQ717uEtCMlKYYpiZ2IDKx/tcPkuEhemZ3IwuWZ9YaeRwT6sGBCLMlxkS6rX0RERERE3EdNKRFxncxlkHobfP/gVkkepM6BqETI3wKOWnPdwxeunGw2ozoP09DyZqLG7mDVzkJS03NYtasQu8P8fPp62ripXyQpSdEM7haMxXL+3U7JcZFcHxvBuqwiCksrCfM3j+xph5SIiIiISNuhppSIuIbDbu6QOuckoVNruRnm/zslQeIcuPJm8Al0VYVyEXsLS1mcnsOSjMMcLasbWp7YOYiUpBjG9Y/E38ezwc9ns1oY2iOkKUoVEREREZEWQE0pEXGNg9/UP7J3PpNeMndGSbNQWlnDx1vySE3PJuPQCed6Rz8vpiRGM31gNL3C/d1XoIiIiIiItFhqSolI0zMMOPB1w+7r4dO0tchFGYbB+gPHeW99Np9szaOixhxabrNaGHVFGClJ0YzqE4anTccpRURERETk8qkpJSJNpyQPNr9jDi0v2tewx/iFN21Ncl75xZUsychhcXo2B46ddK53D23PjKQYbk7sRJi/moYiIiIiItI41JQSkcZVWw2708xG1N4VYDjMdY92YAFqTp7ngRbzKnxdhrmqUgGqax18saOA1PRs/rv7CKdmltPey8b4/lGkDIohsXPQBYeWi4iIiIiIXA41pUSkcRRkmo2oLe/CyWN1652HmjOiYifDvpWnrr4H9Qeen2p4JP8WrDYXFdw62R0Ga/cfY29OET3LbAzp3vGcV7TbmV9C6vocPth0mKLyauf64K7BTE+K5qZ+kbT31rcIERERERFpOnrFISKXr7IYti0xm1GHN9St+0VA/CyInw0de9atx06ElDfNq/CdOfQ8IMpsSMVOdF3trVDatjwWLs8kr7jy1EoWkYE+LJgQS3JcJMUVNSzfnEtqejZbcoqdjwvz92bawGimDYyme6ife4oXEREREZE2R00pEbk0DgccXG02ojI/hNpTDRCrB/ROhoQ50HMM2M7z5SV2IvQZZ16Nr6zAnCHVZZh2SP1AadvymLsoo97+MzDnRN27KIPBXTuwOaeYqlrzOKWH1cKYvuGkDIpmeK9QPDS0XEREREREXExNKRFpmOIc2PS22Yw6cbBuPbSP2YjqPwP8Qhv2XFYbdLu2aepsg+wOg4XLM89qSEHdIcl1B44D0Dvcj5SkGG5O6ESIn7fLahQREREREfk+NaVE5Pxqq2Dnx2Yjat9KnC0O7wCIm2o2ozolgoZgu9W6rKIzjuyd368nx3HrkM4aWi4iIiIiIs2CmlIicra8LWYjamsqVByvW+96rTm0vO9E8GrnvvqknoxDxy9+J8Dfx0MNKRERERERaTbUlBIR08kic2h5xpuQv6VuPaATxN9i/hfc3X31ST3Hy6v5cNNhUtNzyMwradBjwvx9mrgqERERERGRhlNTSqQtczgg60tzV9SOj8BeZa7bvMxh5AmzofsoDSFvJuwOgzV7j5Kans3n2wuotptDyz2tFmw2C5U1jnM+zgJEBPowuFuwC6sVERERERG5MDWlRNqi4wfMoeWb3obi7Lr18LhTQ8tToJ0aGM3FoWMneX9DNu9vyCH3jNlRfSMDmJEUzaT4TqzNOsbcRRkA9Qaenz6st2BCLDarju6JiIiIiEjzoaaUSGvhsMOBNfgc3g0ne0PXq+vvcKqpgB3LYeO/IOurunWfQOiXYu6KihygoeXNRGWNnbRt+aSmZ/PNvmPO9UBfTybHRzE9KYa4ToHO9eS4SF6ZncjC5Zn1hp5HBPqwYEIsyXGRLq1fRERERETkYtSUEmkNMpdB2iNYS3IJOr0WEAXJv4XAmFNDy9+HquJTN1qg+whzV1Sf8eCpWUPNgWEYbMkpJjU9m2WbcymtrAXMPuE1PTuSkhTD9bHh+Hie+zhlclwk18dGsHb/UfbmHKFndChDunfUDikREREREWmW1JQSaekyl0HqbdQ/tAWU5J5aP0NgZ0i4FQbMgg5dXFaiXNixsiqWbjzM4vQcdhWUOtejO/gyfWAMUwd2IrpDw652aLNauKp7CN397ISFhWBVQ0pERERERJopNaVEWjKHHdIe4ayG1PfFTYPEOdB1OFitLilNLqzW7uCrPUdIXZ/DFzsLqLGbn0NvDytj4yJISYrhqu5qKomIiIiISOulppRIS3bwG3NH1MUM/DF0u7bJy5GLyzpazuL0bJZk5FBQUuVc7x8dyPSkGCYOiCLQ19ONFYqIiIiIiLiGmlIiLVF1OWR+CKufbdj9ywqath65oJPVtXy8JY/F6TmsO1DkXO/QzpObE6KZnhRN38gAN1YoIiIiIiLiempKibQUhgE5682r521bCtWlF3/MaX7hTVeXnJNhGGQcOsHi9GyWb86lvNoOgNUCI3qHkpIUw3V9w/Hy0HFKERERERFpm9SUEmnuygph87vmFfSO7qpb79AN4m+B9X8x73POuVIW8yp8XYa5qto2r7C0kqUZh0lNz2bfkXLneteQdkxPimFqYjQRgbraoYiIiIiIiFubUl999RW///3v2bBhA3l5eSxdupTJkyc7b//3v//Nq6++yoYNGygqKmLjxo3Ex8fXe47KykoefPBB3n33Xaqqqrjxxht5+eWXCQ/XzhBpwew1sGeF2YjanQaGucsGD1+4cjIkzIbOw8yh5aF9Tl1lz0L9xtSpAdnJvwWrzbX1tyJ2h8G6rCIKSysJ8/dhcLdgbN8bPl5jd7BqZyGp6Tms2lWI3WF+Hnw9bdzUL5KUpGgGdwvGYtHQchERERERkdPc2pQqLy9nwIAB3HHHHUyZMuWct19zzTWkpKRw9913n/M5fvGLX/Dxxx+zePFiAgMDue+++5gyZQpr1qxp6vJFGt+R3ebxvM3vQnlh3Xr0ILMRdeUU8Pne7KHYiZDypnkVvjOHngdEmQ2p2Imuqb0VStuWx8LlmeQVVzrXIgN9WDAhluS4SPYWlrI4PYclGYc5WlY3tDyxcxApSTGM6x+Jv4+GlouIiIiIiJyLW5tSY8eOZezYsee9fc6cOQAcOHDgnLcXFxfz17/+lbfffpvRo0cD8Pe//52+ffvy3XffcdVVVzV6zSKNrqoUti+FjH9Bzrq69fahMGAmxM+GsD4Xfo7YidBnHI4Dayg5vJuATr2xdr1aO6R+gLRtecxdlHHWocj84kruXZRBt47tyDp60rne0c+LKYnRTB8YTa9wf9cWKyIiIiIi0gK16JlSGzZsoKamhjFjxjjX+vTpQ+fOnfn222/VlJLmyzDg0Lfm8bztS6HmVHPDYoNeN5i7onrfCLZL2GVjtUHXa6hs15uAsDDzaJ9cFrvDYOHyzHNO6Tq9lnX0JFYLjO4TTkpSNKP6hOFp09+5iIiIiIhIQ7XoplR+fj5eXl4EBQXVWw8PDyc/P/+8j6uqqqKqqu6oTUlJCQAOhwOHw9EktTY1h8OBYRgttv42ozQPNr+DZdPbWIr2OZeNkJ4Y8bOh/wzwj6i7/yV+PpWDxrF2/7F6R/bO58VZCSTH1X2+msvfu3IgyoCAciDKgJiUAwHlQC6cAXfmokU3pS7Xb37zGxYuXHjW+pEjR6isvPgL0ebI4XBQXFyMYRhYtUOmebFX433wS3x3LsE7+ysshvkP3uHRjsqeY6m4Yio1EYlgsUAFUFF44ee7AOXgh6uxO/gw/XCD7nu06ASFhc3v71k5EGVAQDkQZUBMyoGAciAXzkBpaambqmrhTamIiAiqq6s5ceJEvd1SBQUFREREnPdxjz76KA888IDz7ZKSEmJiYggNDSUgIOC8j2vOHA4HFouF0NBQfZFpLgozsWx8C7a+h+XkMeeyEXMVRsJsiJ2Ej5cfPo34LpWDy7czv5TFG3L4cONhik7WNOgxPaNDCQsLaeLKLp1yIMqAgHIgyoCYlAMB5UAunAEfn8Z8VXppWnRTauDAgXh6evLFF18wdepUAHbt2sWhQ4cYOnToeR/n7e2Nt7f3WetWq7VF/wO1WCwt/mNo8SpOwLYl5qyo3Iy6db8IiJ8F8bOxdOyJpQlLUA4arriihuWbc0lNz2ZLTrFzPdTPi5M1dsqr7Od8nAWICPRhSPeOWK1N+dm8fMqBKAMCyoEoA2JSDgSUAzl/BtyZCbc2pcrKyti7d6/z7aysLDZt2kRwcDCdO3emqKiIQ4cOkZtrXuZ+165dgLlDKiIigsDAQO68804eeOABgoODCQgIYP78+QwdOlRDzqVxOOxw8BsoKwC/cOgy7Owr2jkccHC12YjK/BBqTx0BtXpA72RIvA16XAe2Ft0DbjUcDoPv9h8jNT2bT7flU1VrHqf0sFoY0zeclEHRDO8Vyn92FDB3kdlYPHPg+ekW1IIJsdiaaUNKRERERESkJXDrq+T09HRGjRrlfPv0kbof/ehH/OMf/2DZsmXcfvvtzttnzpwJwIIFC/jVr34FwLPPPovVamXq1KlUVVVx44038vLLL7vug5DWK3MZpD0CJbl1awFRkPwMxE6EE9mw+R2zGXXiYN19QvtAwhxzaLlfqOvrlnM6fKKCJRtyWLwhm+yiCud673A/UpJiuDmhEyF+dTsok+MieWV2IguXZ9Ybeh4R6MOCCbEkx0W6tH4REREREZHWxmIYxrmuet6mlJSUEBgYSHFxcYueKVVYWEhYWJi2YzaGzGWQehv198iAuU/GgPA4KNhed7t3AMRNNZtRnU4NLXcD5aC+yho7KzILSE3PZvXeo5z+aufv7cHE+ChSkmLoHx2I5QKfL7vDYF1WEYWllYT5+zC4W3Cz3yGlHIgyIKAciDIgJuVAQDmQC2fAnT0RnScS+T6H3dwhdVZDirq1gm3m/7teCwmzoe9E8GrnqgrlIrYdLmZxejYfbMqluKJuaPnQ7iGkDIom+cpIfL1sF3iGOjarhaE9mt8wcxERERERkZZOTSmR7zv4Tf0je+cz5Q3on9L09UiDHC+v5sNNh0lNzyEzr8S5HhXow7SB0UwbGEPnEDUORUREREREmgs1pUTO5LDD3i8adl+Ltr26m91hsGbvUVLTs/l8ewHVdnNouZfNyg1XhpOSFMPVPTs2++N2IiIiIiIibZGaUiIAxw/AprfN/4qzG/YYv/AmLUnO79Cxk7y/IZv3N+SQe8YQ8r6RAcxIimZyQieC2nm5sUIRERERERG5GDWlpO2qqYAdy2HjvyDrq7p17wBzx1RN+XkeaDGvwtdlmEvKFFNFtZ207Xmkrs/h2/3HnOuBvp5Mjo9ielIMcZ0C3VihiIiIiIiIXAo1paRtMQzI3QgbF8HW96Gq+NQNFug+wrx6Xp/xsOfzU1ffg/oDz08dA0v+LVgbNihbztbQK9oZhsGWnGJS07NZtimX0qpawLy44TU9O5KSFMP1seH4eOpzISIiIiIi0tKoKSVtQ/lR2JJqNqMKt9etB3aGhFthwCzo0KVuPXYipLxpXoXvzKHnAVFmQyp2outqb2XStuWxcHkmeWccu4sM9GHBhFiS4yIBOFZWxdKNh1mcnsOuglLn/aI7+DJ9YAxTB3YiuoOGlouIiIiIiLRkakpJ62WvhX0rzeN5uz4FR425bvM2m0oJs6HrcLCeZ2B57EToM868Gl9ZgTlDqssw7ZD6AdK25TF3UUa9vWcA+cWVzF2UwbxRPdhXWM4XOwuosZv38vawMjYugpSkGK7qHoJVQ8tFRERERERaBTWlpPU5ts/cEbX5HSjNq1uPSjAbUXFTwbdDw57LaoNu1zZNnW2M3WGwcHnmWQ0pqDsg+dKqfc61AdGBTE+KYcKAKAJ9PV1So4iIiIiIiLiOmlLSOlSXQ+aHZjPq4Jq6dd9g6D/DPKIX0c999QnrsorqHdk7n7FxEfx8TC/6RAS4oCoRERERERFxFzWlpOUyDMhZbx7P2/ZvqC4z1y1W6HGduSvqirHg4e3eOgWAwpKLN6QAkuMi1JASERERERFpA9SUkpanrBA2v2vuijq6q269QzezETVgFgR2cl99Uk9haSVLMw7zz28ONOj+Yf4+TVuQiIiIiIiINAtqSknLYK+BPSvMRtTuNDDs5rqHL1w52WxGdbkaLBqC3RzU2B2s2llIanoOq3YVYneca5JUfRYgItCHwd2Cm75AERERERERcTs1paR5O7LbPJ63+V0oL6xbjx5kNqKunAI+OurVXOwtLCU1PYd/Z+RwtKzauZ7YOYiUpBi8Paw8kLoZoN7A89OtxAUTYrHp6noiIiIiIiJtgppS4noOOxz8BsoKwC8cugwzr3J3WlUpbF8KGf+CnHV16+1DYcBMiJ8NYX1cX7ecU2llDR9vySM1PZuMQyec6x39vJiaGM30pGh6hvk71329bCxcnllv6HlEoA8LJsSSHBfpytJFRERERETEjdSUEtfKXAZpj0BJbt1aQBQk/9ZsOm1cZDakak6at1ls0OsGc1dU7xvB5umeuqUewzBYl1VEanoOn2zNo6LGPE5ps1oYdUUYKUnRjOoThqfNetZjk+MiuT42gnVZRRSWVhLmbx7Z0w4pERERERGRtkVNKXGdzGWQehv1D25hNqhSb6u/FtLr1NDymeAf4bIS5cLyiytZkpHD4vRsDhw76VzvEdqelKQYbk7s1KBB5TarhaE9QpqyVBEREREREWnm1JQS13DYzR1S329I1WOB+Fsg8UcQM1hDy5uJ6loHX+woIDU9m//uPsLpmeXtvWxMGBDF9KQYEjsHYdHnS0RERERERC6BmlLiGge/qX9k75wMGDALOg9xSUlyYTvzS0hdn8MHmw5TVF43tHxw12CmJ0Uzrn8k7bz0JUREREREREQuj15RStOqOAHblsCaPzfs/mUFTVqOXFhxRQ3LNueyOD2bLTnFzvUwf2+mDYxm2sBouof6ubFCERERERERaS3UlJLG53DAwdXm0PLMD6G28uKPOc0vvOnqknNyOAy+23+M99KzSduWT1WtAwBPm4UxfcNJSYrh2l4d8TjH0HIRERERERGRy6WmlDSeE9mw+R2zGXXiYN16aB+IvxW+fenUTqhzzZWymFfh6zLMVdW2eYdPVPB+eg6LN2STc7zCud473M8cWp7QiRA/bzdWKCIiIiIiIq2ZmlLyw9RUwq6PzUbUvlU4G07eARA3FRLmQKdEc2h5h66nrrJnoX5j6tSA7OTfgtXm0vJbE7vDYO3+Y+zNKaJnmY0h3Ttis9YfPl5ZY+fzzAIWp2ezeu9RjFOfBn9vDybGR5GSFEP/6EANLRcREREREZEmp6aUXJ68LbDxX7AlFSpP1K13vdZsRPWdAF7t6j8mdiKkvGlehe/MoecBUWZDKnaiS0pvjdK25bFweSZ5xaePSmYRGejDggmxJMdFsu1wMYvTs/lgUy7FFTXOxw3rEUJKUgw3XhmBr5cagiIiIiIiIuI6akpJw50sgq3vm82o/C116wGdIP4W87/g7hd+jtiJ0GeceTW+sgJzhlSXYdoh9QOkbctj7qKMsw5F5hdXcu+iDKKDfMk5UXc8LyrQh2lJMUwfGE1M8PcahyIiIiIiIiIuoqaUXJjDDvu/NI/n7fwI7NXmus3LbC4lzIbuoy6tqWS1Qbdrm6TctsbuMFi4PPOcU7pOr+WcqMDTauHGuAhSkmK4uufZx/pEREREREREXE1NKTm34wdg41uw6W0oyalbD+8HiXOg33RoF+y28sS0LqvojCN75/fy7ESuj41wQUUiIiIiIiIiDaOmlNSpqYAdy83jeVlf1a37BEH/FHNXVOQAt5Un9VVU2/lka+7F7wicrLY3cTUiIiIiIiIil0ZNqbbOMCA3wzyet3UJVBWfusEC3Ueajag+48HTx51VyimGYbA5p5jU9GyWb8qltKq2QY8L89fnT0RERERERJoXNaXaqvKj5pXzNi6Cwu1160GdIX42xM8y/yzNwrGyKpZuPMzi9Bx2FZQ61zsF+VBcUUvZeZpTFiAi0IfB3XTUUkRERERERJoXNaVaA4cdDqzB5/BuONkbul597sHj9lrYt9I8nrfrU3DUmOsePtB3orkrquu1YLW6tn45p1q7g6/2HCF1fQ7/2VFArcMcXe7tYWVsXAQpg2K4qlsIn2fmM3dRBkC9geenR5kvmBCrweYiIiIiIiLS7Kgp1dJlLoO0R7CW5BJ0ei0gCpKfgdiJ5tvH9pk7oja/A6V5dY+NSjAbUXHTwDcIaR72Hylj8YYclmzIobC0yrk+IDqQ6UkxTBgQRaCvp3M9OS6SV2YnsnB5Zr2h5xGBPiyYEEtyXKRL6xcRERERERFpCDWlWrLMZZB6G/X3xwAleeb6oLugYDsc+qbuNt9gGDAT4m+FiDiXlivnV15Vyydb81icnsO6A0XO9eD2Xtyc0InpSdH0iQg47+OT4yK5PjaCtfuPsjfnCD2jQxnSvaN2SImIiIiIiEizpaZUS+WwQ9ojnNWQgrq19W+Y/7dYoecYc1dU77Hg4eWqKuUCDMMg49BxUtfn8NGWXMpPXSHPaoERvUNJSYrhur7heHk07DilzWrhqu4hdPezExYWglUNKREREREREWnG1JRqqQ5+AyW5F79f4m0w8lHzSJ80C4Wllfw74zCp6dnsP1LuXO8a0o7pSTFMTYwmIlBXyxMREREREZHWTU2plqqsoGH36zZCDalmoMbuYNXOQlLTs1m16wj2U0PLfT1tjOsfSUpSDIO6dsBi0e4mERERERERaRvUlGqp/MIb937SJPYWlpKansO/M3I4WlbtXE/sHERKUgzjB0Th561/hiIiIiIiItL26NVwS9VlmLkDqiSPc8+Vspi3dxnm6sravNLKGj7akkdqejYbD51wrnf082JqYjTTk6LpGebvvgJFREREREREmgE1pVoqqw2Snzl19T0L9RtTp46AJf/WvJ80OcMwWJdVRGp6Dp9szaOixhxabrNaGHVFGClJ0YzqE4anrWFDy0VERERERERaOzWlWrLYiZDypnkVvjOHngdEmQ2p2Inuq62VsDvMZlNhaSVh/j4M7haM7Yyr2uUXV7IkI4fF6dkcOHbSud4jtD0pSTHcnNiJMH8NLRcRERERERH5PjWlWrrYidBnHI4Dayg5vJuATr2xdr1aO6QaQdq2PBYuzySvuNK5Fhnow2M39cFmtZKans1Xu49wamY57b1sTBgQxfSkGBI7B2louYiIiIiIiMgFqCnVGlht0PUaKtv1JiAsDKw6IvZDpW3LY+6ijLOmdeUVVzL/nU311gZ3CyYlKYab+kXQzkv/pEREREREREQaQq+gRb7H7jBYuDzznOPjT7Na4J7h3ZkxqDPdOrZ3WW0iIiIiIiIirYW21Ih8z9r9x+od2TsXhwEjeoepISUiIiIiIiJymbRTSuSUnOMnWbLhMP/8NqtB9y8svXDjSkRERERERETOT00padMqa+x8nlnA4vRsVu89inGhM3vfo6vqiYiIiIiIiFw+NaWkTdp2uJjU9Gw+2HiYkspa5/qwHiFMS4zmd5/tpKCk6pxzpSxARKAPg7sFu6xeERERERERkdZGTSlpM46XV/PhpsOkpueQmVfiXI8K9GFaUgzTB0YTE9wOgHbeNuYuysAC9RpTllP/XzAhFpvVgoiIiIiIiIhcHjWlpFWzOwxW7z1Kano2K7YXUG13AOBls3LDleGkJMVwdc+OZzWYkuMieWV2IguXZ9Ybeh4R6MOCCbEkx0W69OMQERERERERaW3UlJJW6dCxk7y/IZv3N+SQe0ZTKTYygBmDYpgUH0VQO68LPkdyXCTXx0awLquIwtJKwvzNI3vaISUiIiIiIiLyw6kpJa1GRbWdtO15pK7P4dv9x5zrgb6eTI6PYnpSDHGdAi/pOW1WC0N7hDR2qSIiIiIiIiJtnppS0qIZhsHmHHNo+fJNuZRWmUPLLRa4pmdHUpJiuD42HB9Pm5srFREREREREZEzqSklLdKxsiqWbjxMano2uwvKnOvRHXxJSYph6sBoOgX5urFCEREREREREbkQNaWkxai1O/hqzxFS1+fwnx0F1DrM6+J5e1gZGxdByqAYruoWglUzn0RERERERESaPTWlpNnbf6SMxRtyWLIhh8LSKuf6gOhApifFMGFAFIG+nm6sUEREREREREQulZpS4nJ2h3HRK9qVV9XyydY8FqfnsO5AkXM9uL0XNyd0YnpSNH0iAlxduoiIiIiIiIg0EjWlxKXStuWxcHkmecWVzrXIQB8WTIjlxisjyDh0nNT1OXy0JZfyajsAVguMvCKMlKRoRvcJx8vD6q7yRURERERERKSRqCklLpO2LY+5izIwvreeV1zJvYsyCA/wpqCk7nhe15B2TE+KYWpiNBGBPq4tVkRERERERESalJpS4hJ2h8HC5ZlnNaTOVFBShY+HlfEDokhJimFQ1w5YLBpaLiIiIiIiItIaqSklLrEuq6jekb3zeXn2QEb3CXNBRSIiIiIiIiLiThrOI02utLKGDzYdbvB9RURERERERKT1004paRKGYV5hLzU9h0+25lFRY2/Q48L8NTtKREREREREpC1QU0oaVX5xJUsyclicns2BYyed6907tuNIWTWllbXnfJwFiAj0YXC3YBdVKiIiIiIiIiLupKaU/GDVtQ7+s6OA1PRsvtp9BMepaebtvWxMGBDF9KQYEjsH8dn2fOYuygCoN/D89CjzBRNisVk12FxERERERESkLVBTSi7bzvwSUtfn8MGmwxSVVzvXB3cLJiUphpv6RdDOqy5iyXGRvDI7kYXLM+sNPY8I9GHBhFiS4yJdWr+IiIiIiIiIuI+aUnJJiitqWLY5l8Xp2WzJKXauhwd4MzUxmulJMXTr2P68j0+Oi+T62AjWZRVRWFpJmL95ZE87pERERERERETaFjWl5KIcDoPv9h/jvfRs0rblU1XrAMDTZmFM33BSkmK4tldHPGwNu5ijzWphaI+QpixZRERERERERJo5NaXkvHKOn2TJhsMs3pBNzvEK5/oV4f6kDIphcnwUIX7ebqxQRERERERERFoqNaWknsoaO59nFrA4PZvVe49inJpI7u/twcT4KFKSYugfHYjFouN2IiIiIiIiInL51JQSALYdLmZxejYfbMqluKLGuT6sRwgpSTHceGUEvl42N1YoIiIiIiIiIq2JmlJt2PHyaj7cdJjU9Bwy80qc61GBPkxLimH6wGhigtu5sUIRERERERERaa3UlGpj7A6D1XuPkpqezYrtBVTbzaHlXjYrN1xpDi2/umdHXQ1PRERERERERJpUwy6X1kS++uorJkyYQFRUFBaLhQ8++KDe7YZh8OSTTxIZGYmvry9jxoxhz5499e5TVFTErbfeSkBAAEFBQdx5552UlZW58KNwP/upq+N9vrOI7/Yfw+4wzrrPoWMn+dPnu7j2mZX86G/r+HhLHtV2B7GRASyceCXrfnkdL96SyPDeoWpIiYiIiIiIiEiTc+tOqfLycgYMGMAdd9zBlClTzrr9d7/7HX/+85/55z//Sbdu3XjiiSe48cYbyczMxMfHB4Bbb72VvLw8VqxYQU1NDbfffjv33HMPb7/9tqs/HLdI25bHwuWZ5BVXnlrJIjLQhwUTYhnRO4y07Xmkrs/h2/3HnI8J9PVkcnwU05NiiOsU6J7CRURERERERKRNc2tTauzYsYwdO/actxmGwXPPPcfjjz/OpEmTAHjzzTcJDw/ngw8+YObMmezYsYO0tDTWr19PUlISAC+88AI33XQTf/jDH4iKinLZx+IOadvymLsog+/vi8orruTeRRn4eFiprDWP51kscE3PjqQkxXB9bDg+nhpaLiIiIiIiIiLu49bjexeSlZVFfn4+Y8aMca4FBgYyZMgQvv32WwC+/fZbgoKCnA0pgDFjxmC1Wlm7dq3La3Ylu8Ng4fLMsxpSZ6qsddApyIcHru/N6kdG8687hzBhQJQaUiIiIiIiIiLids120Hl+fj4A4eHh9dbDw8Odt+Xn5xMWFlbvdg8PD4KDg533OZeqqiqqqqqcb5eUmFeeczgcOByORqm/qa3df+yMI3vn98yUfgzr2RGgxXxscvkcDgeGYehz3cYpB6IMCCgHogyISTkQUA7kwhlwZy6abVOqKf3mN79h4cKFZ60fOXKEysqLN3qag705RQ263/7co/QM0BeetsLhcFBcXIxhGFitzXYjpDQx5UCUAQHlQJQBMSkHAsqBXDgDpaWlbqqqGTelIiIiACgoKCAyMtK5XlBQQHx8vPM+hYWF9R5XW1tLUVGR8/Hn8uijj/LAAw843y4pKSEmJobQ0FACAgIa8aNoOj3LbEDWxe8XHUpYWEjTFyTNgsPhwGKxEBoaqm82bZhyIMqAgHIgyoCYlAMB5UAunIHTF5Jzh2bblOrWrRsRERF88cUXziZUSUkJa9euZe7cuQAMHTqUEydOsGHDBgYOHAjAypUrcTgcDBky5LzP7e3tjbe391nrVqu1xfwDHdK9I5GBPuQXV55zrpQFiAj0YUj3jlitFleXJ25ksVhaVJalaSgHogwIKAeiDIhJORBQDuT8GXBnJtyaxrKyMjZt2sSmTZsAc7j5pk2bOHToEBaLhfvvv59f//rXLFu2jK1bt3LbbbcRFRXF5MmTAejbty/JycncfffdrFu3jjVr1nDfffcxc+bMVn/lPZvVwoIJsYDZgDrT6bcXTIjFpoaUiIiIiIiIiDRDbm1Kpaenk5CQQEJCAgAPPPAACQkJPPnkkwA8/PDDzJ8/n3vuuYdBgwZRVlZGWlpava1lb731Fn369OG6667jpptu4pprruH11193y8fjaslxkbwyO5GIwPpb7SICfXhldiLJcZHneaSIiIiIiIiIiHtZDMM41+mvNqWkpITAwECKi4tbzEypM9kdBmv3H2VvzhF6RocypHtH7ZBqoxwOB4WFhYSFhWlbbhumHIgyIKAciDIgJuVAQDmQC2fAnT2RZjtTShrOZrVwVfcQuvvZCQsL0QwpEREREREREWn21CIVERERERERERGXU1NKRERERERERERcTk0pERERERERERFxOTWlRERERERERETE5dSUEhERERERERERl1NTSkREREREREREXE5NKRERERERERERcTk1pURERERERERExOXUlBIREREREREREZdTU0pERERERERERFxOTSkREREREREREXE5NaVERERERERERMTl1JQSERERERERERGX83B3Ac2BYRgAlJSUuLmSy+dwOCgtLcXHxwerVb3Gtko5EFAORBkQk3IgyoCAciAm5UAulIHTvZDTvRFXUlMKKC0tBSAmJsbNlYiIiIiIiIiIuF5paSmBgYEufZ8Wwx2tsGbG4XCQm5uLv78/FovF3eVclpKSEmJiYsjOziYgIMDd5YibKAcCyoEoA2JSDkQZEFAOxKQcyIUyYBgGpaWlREVFuXwnnXZKAVarlejoaHeX0SgCAgL0RUaUAwGUA1EGxKQciDIgoByISTmQ82XA1TukTtNhUhERERERERERcTk1pURERERERERExOXUlGolvL29WbBgAd7e3u4uRdxIORBQDkQZEJNyIMqAgHIgJuVAmmsGNOhcRERERERERERcTjulRERERERERETE5dSUEhERERERERERl1NTSkREREREREREXE5NKREREREREbkojSMWkcamppSck77hiLRdeXl5pKenu7sMaUYcDoe7SxARN8jLy+P48ePuLkPcrKamxvnawGKx6HtCG6XXh9JUPNxdgLjfwYMHWb16NeXl5fTv35+rrrrK+Q3HalXfsq04cOAAH330ESUlJVx55ZVMmjTJ3SWJG2zZsoWbb76Ze+65h8jISDp16uTuksTFDhw4wLfffsuJEyfo06cPo0aNwmq1YhgGFovF3eWJi2RnZ/Pdd99x5MgREhMTueqqq9xdkrjYxo0bGThwIGlpadxwww3uLkfcZOfOnfzqV7/ixIkT+Pj48MEHH+j1QRtz4sQJ2rVrh5eXl34WaMNycnLYsWMHpaWlJCUl0blz50Z7bjWl2ritW7cyatQoYmNj2bp1KzExMfTq1YslS5ZgtVrVmGojtmzZQnJyMvHx8ezatYuIiAhsNhvjx493d2niQvv27WPMmDHceuutPPDAA3h6eta7XV8PWr+tW7dy3XXXcdVVV7F9+3YCAgKIiIhg6dKl+Pj46IfRNmLr1q2MGzeOnj17kpGRwZVXXsmcOXO499573V2auMjmzZsZMWIEv/jFL9SQasO2b9/OiBEjmDhxIt26deP9999n9uzZLFq0CEDfE9qAHTt2cPvttzN58mR+8Ytf4O3trc97G7R161ZuuOEGoqOjycjIICkpiWHDhvHss882yvPr1UUbVl5ezj333MOMGTNYuXIlu3bt4pFHHmHLli0MGTKE2tpaZ2NKWq/du3czduxY7rjjDj766CNWr17NiRMnyMvLc3dp4iKnt2O/9dZbjBgxgmeffRabzcZrr73Gr3/9a5555hkANaRauWPHjjF79mzuuOMOli1bxoYNG7j//vv57LPPGDduHEePHtWxjTZg//79TJw4kdmzZ/Pxxx+TmZlJjx49+Oyzz9xdmrjItm3buOaaa/jpT3/KH//4RxwOBxs3buTjjz9my5Yt7i5PXKSsrIx58+Zx66238re//Y2nn36au+66i7CwMOd91Jho3Q4dOsTMmTPZt28fH3/8Ma+88gpVVVVYLBYd5WtDiouLmT17NjNnzmTFihVkZWUxbtw4Pv/880Y7WaNXGG1YVVUV5eXl3HTTTXh4eBAWFkZKSgqLFi3i+PHjjB49GsB5bENan6qqKl5++WVuvPFGFixYgMViITIykvj4eLZu3cpDDz3UaB1wab5O/1CZnZ1N7969ARg2bBhvvfUWy5cv56WXXiI2NpacnBxA84Vaq+zsbAzD4Cc/+QkAQUFBjB49miuuuIKtW7cyYcIEQM3J1qympoZ//etfJCUl8eijj+Lt7U1UVBR33303q1at4sCBA+4uUZqYw+Fg4cKFlJeXs2DBAgDGjh3LPffcw4QJE7jllluYNWuWm6sUVygrK+PEiRPOF50Wi4WcnBw+++wzhg4dyjXXXMM333wDaNZQa2QYBsuXLycqKoqPP/6Y3r178+6779ZrTOnnwbbh+PHjVFZWMnPmTIKCgujcuTO/+MUvePLJJ9mxYwe33HLLD34f+smyDQsICKC2tpaVK1c61zw9PRk8eDBvvPEG+fn5PP7444B+E9Ja2Ww2ZsyYwc9+9jM8PT2xWCw89dRTvPPOO5w8eZJ9+/bx6quvMnPmTHeXKi7gcDjYsmUL7733Hh06dOCjjz5i5cqVrF27loCAAKZOnQqoKdGanThxgq1btzrfLi8vx9fXl+eff57c3Fz+9Kc/ubE6cYWgoCCSk5Px9/d3/luPiIjAarVSXV3t5uqkqVmtVl544QWSkpIYNGgQw4cPx8vLi5deeomdO3fy4IMPkpGRwbx589xdqjSxDh06UFlZyR//+Ed2797NY489xhtvvMEdd9zBgw8+SFBQEDNnzuTYsWN6ndAKWSwWJk2axF133cXgwYN59dVXufLKK3nnnXd4+eWXqaio0MaFNiIgIICqqipnExrA39+fSZMm8ctf/pJt27bxxhtv/KD3oVcWbZjFYmHatGl89913pKWl1Vu/+uqrGTt2LOnp6dTW1rqxSmlKHh4eJCYmEh8fD5hH+V588UWWLVvGX/7yF/7973/zi1/8gvT0dPbs2ePeYqXJzZkzh2PHjvH888/TpUsXAgIC8PX1JTIykueee468vDw2bNjg7jKliYSHh9O9e3fefPNN/vSnP5GWlsbQoUMZNWoUs2bNIikpiV27drm7TGkihmHg6enJbbfdxp133gnU7YqMiIggNDQUD4+6UaRn/kJLWpeIiAg++ugj2rdvT1FRES+99BKDBw+md+/ezJ49m2nTprF+/XqKiorcXao0EcMw8Pb25rnnniMzM5MHHniAV155hddee40HH3yQadOm8cEHH1BSUsLixYvdXa40kaioKOcvJD09PXnppZfo168f7777Lq+++iqVlZVYLBbnjDFpnXx8fBg+fDgrVqxg+/bt9danTZtGly5d+O9///uD3ocGnbch+fn57N27Fw8PD3r06EFoaChz5szh888/58UXX8TX15cRI0YAZrMiPj6etLQ0SktL6dChg5url8ZyOgc2m41evXrRsWNH5229e/dmy5YthIaGOodah4SE4OnpSWBgoBurlsZ25teDnj170rFjR2JjY+nZsydvv/228/N9eqeEr68v7du3p127du4sWxrRmV8LevToQWRkJM8//zwLFizg5ZdfxmKxMG/ePJ566ikAwsLCOHjwoJurlsZWXV3tvKIS4Px+bxiG899/RUUFxcXFVFVVAfDEE0/wt7/9jfT0dCIjI91TuDSaMzNwesdLWFgYy5cvZ/369URERABmk9LT05PIyEhOnjx51sUwpGX7/tcCMI9u7tq1iyNHjjBu3DiGDBkCmEd9jxw5Qrdu3YiOjnZXydLIioqKyM/PByA6OpqAgADn6wG73Y6Pjw8vvPAC8+fP591338UwDPbs2cNf/vIXhg8f3qhXYxP3OXbsGIcPH6Zdu3aEhYUREBDA/fffz9ixY/n1r3/NU089Rffu3QFo3749w4cP57333qOiogJfX9/Lep9qSrURW7ZsYdKkSdhsNmdX+6WXXmLixIn85S9/YebMmfzud7/j0KFDzJkzh9raWjZv3kx0dDTe3t7uLl8ayfdzYLVaeeWVV7jhhhucP1yGhIQAdc2ItWvX0rNnTzUjWpFzfT14+eWXmTBhAk899RQlJSWkpaVx33338eKLL3L8+HGWLVuGr69vvSamtFznysCLL77IpEmTeOutt6ipqeH48eN069YNMF+MFhQU0L9/fzdXLo1px44dzJs3j6effpqhQ4fWezF65nGciooKysvL8fb25umnn+b3v/89a9asUUOqFThXBk5/7kNDQ7npppuc9z39c0FmZiZxcXF4eXm5pWZpfOfKwekseHl5ERoais1mY+nSpTz66KMA/O1vf6OsrIwBAwa4uXppDFu3buWOO+6gpKSEqqoqBg4cyIsvvuj8Om+z2bDb7fj6+vLiiy9y33338dhjj+Ht7c26devUkGoltmzZwowZM6iurqa2tpbIyEhefPFFkpKSWLp0Kddffz0Oh4N58+Y5N7Ps2bOH6OhobDbb5b9jQ1q9wsJCo2fPnsYjjzxiHDp0yFi7dq0xd+5cw2azGX/4wx8MwzCM7du3G5MmTTJ69epldO3a1Rg9erQRFBRkbNy40b3FS6M5Xw48PDyMZ5991igrK6t3/6KiIuPRRx81QkJCjK1bt7qpamlsF8rB6a8H2dnZxoMPPmhEREQYHTp0MAYOHGiEh4cbGRkZbq5eGsOFvif88Y9/NEpLS+vdf+/evcZjjz1mdOjQwdixY4ebqpbGlpWVZfTo0cPo0KGDMWjQIOPbb781DMMwHA7HWfctKioyEhMTjSlTphg+Pj5Genq6q8uVJnApGTAMw8jJyTH+93//Vz8XtDIXy4HD4TAqKyuNhx9+2IiLizP69u1rjB8/3ggLC9PrhFZi586dRmhoqPHQQw8ZGzduNP7yl78YI0eONJ577jnDMOp/TbDb7YZhGMa9995rdOjQwdi2bZtbapbGl5uba0RHRxsPP/ywsW3bNmPx4sXGzTffbHh7exupqamGYRjGt99+a/Tv398YOHCgkZCQYEyePNkICAgwNm/e/IPet5pSbcCePXuMK6644qxvHE8//bRhsViMV155xTAMwzh8+LCxdu1aY8GCBcYbb7xh7N692w3VSlO5UA6sVqvx+uuvG4ZhfrP57LPPjHvuucfo2rWrfuBoZRr69aC4uNjIyckxXn/9dePjjz82Dhw44IZqpSlcyteC/Px848knnzRiYmLUlGxFKisrjXnz5hlTp0413nrrLWPKlClGQkLCeZsSubm5hoeHh+Hn56fvCa3EpWbgq6++Mu666y6jc+fOykAr0pAcnG5C5OfnG4sXLzbuvvtu45lnntHrhFaitLTUSElJMe6+++5667fccosxevTocz7mtddeMywWi34uaGXWr19vxMXFGQcPHnSulZWVGfPnzze8vb2NTz/91DAM8+fI999/35g3b57xm9/8plF+YammVBuQnp5ueHl5OTuY1dXVztuefPLJerdJ63WxHHh7ezt/85mbm2u8+eabRlZWljtKlSbUkK8HW7ZscVd54gKX8rWgpqbGOHDggHH48GG31CpN54MPPjDeeOMNwzAM4+uvvzZuvvnm8zYliouLjZ///OfGrl273FKrNI1LycCRI0eMpUuX6hcUrVBDcnC6MSWtz5EjR4yf/exnxjvvvGMYhmHU1tYahmEYS5YsMa699lqjtrbWuXam/fv3u7ROaXorVqwwLBaLkZOTYxhG3a642tpa48477zSCgoKMffv2Ncn7thiGruPYFiQnJ1NeXs6HH35IcHAwNTU1eHp6Yrfbuemmm4iOjua1117DarXqcu+tWENy8Oqrr+Lp6VlvroS0Lg3Jweuvv47FYtHXg1aqod8TzrzamrRu//3vf/nzn//M/v37eeWVV7jqqquoqqriwIEDXHHFFc6MSOt1rgxUVlZy8OBBrrjiCv1c0EacLweHDh2id+/e7i5PGplhGKxfv57Bgwc737ZYLHz44Yf8v//3/1i7di02mw2LxUJJSQkBAQFurliaSk1NDSNGjKBHjx68+OKLBAYGOgfdHzp0iFmzZjFu3Dgee+wx7Hb7D5sh9T16tdFGzJs3D7vdzkMPPcSJEyfw9PTE4XBgs9mIjIzk6NGjeHh46AVoK9eQHJx+0aEfPFuvhuTAZrPp60Er1tDvCdL6ORwOAEaMGMHPfvYzunfvzrx581i9ejUPPfQQ1113HWVlZcpDK3ahDDz88MOMGTOGsrIy/VzQyl0sB6e/FkjrYrFYzmpIAZw8eZKysjJnQ+rxxx9n3Lhx1NTUuLNcaUIeHh7MmDGDPXv28MILL1BeXu58LdC5c2fat2/Prl27ABq1IQW6+l6bMW7cOPbs2cPixYuZN28eL730kvOyz56engQFBVFTU4OHh4d+6GjFlAMB5UCUAaljtVqdL0ROX0nnhRdeYNSoUbRv357PP/8cPz8/N1cpTUkZEFAOpP4vpAMDA/H19XU2pP70pz/x1VdfacdsK3X63/5Pf/pT9u7dy4cffkhFRQWPP/44vr6+AISFhRESEoLD4cBisTTqz4c6vtcGnN52Z7fbef3111m0aBH79u1j/PjxHDt2jP/85z98++23xMXFubtUaULKgYByIMqAnNuZvyEfP348a9asYfXq1Vx55ZVurkxcRRkQUA7EtGLFCp566imSkpJ44YUX+Oabbxg4cKC7y5ImdPrnw5qaGh5//HFWrVpFRUUFkyZNIisri2XLlrF27VpiY2Mb/X2rKdXKnA7T+dYNw2Dv3r3885//JCsri6CgIH760582SbjEfZQDAeVAlAExnS8H32e323nmmWd46qmnWLNmDfHx8U1fnLiEMiCgHEjDM/Dee+8xa9Ys2rdvz3//+18SExNdUJ00NbvdjsPhqLfj7cxG9Jm/uPzyyy9JTU3lwIEDhIaG8sgjj9CvX78mqUtNqVbg4MGDfPPNN8yaNQs4/xcbDahs3ZQDAeVAlAExNTQH37ds2TJ69uypxmQroAwIKAdyeRnIyMjgf//3f3nuueeUgVZi586dPPfcc+zYsYPExEQmTZrEyJEjz7rf9/NhGAaGYTTprFnNlGrhdu/ezVVXXUVoaCgVFRXccccdWK3Wc36xOf3iQy9EWh/lQEA5EGVATJeSg++bOHGii6qUpqQMCCgHcvkZiI+P57333nPOm5SWbfv27YwaNYrk5GQSEhJYuXIlWVlZ9OvXj5CQkHr3PZ2L0z8fNvb8qHPRTqkWrKioiFtuucU5fOzo0aP8+Mc/5s477wQa/psQadmUAwHlQJQBMSkHogwIKAdy+RnQL6tal/z8fMaPH8/IkSP5wx/+AMCOHTtISkrivffeY/z48W6uEPSVqAWrrq6ma9euzJs3j9dff53IyEj+8Y9/8Ne//hWou4rGaeo/tk7KgYByIMqAmJQDUQYElAO5/AyoIdW6bNy4kc6dO3P77bcDUFNTQ9++fRk2bBhHjx4F3P/vXzulWqjTHez8/HzCw8Odf54/fz75+fn86Ec/4q677gLM4Onyna2TciCgHIgyICblQJQBAeVAlAGps3PnTv7zn/9w33331VsfM2YMo0aN4pe//KWbKqujnVItjMPhqPd2aGgoFouF6upqIiIieOmll4iIiOCf//wnf/3rX6mqquLhhx/miSeecFPF0hSUAwHlQJQBMSkHogwIKAeiDIjpdA4cDgd9+vRh3rx59dYBPDw8qK2tdb792muvkZqa6tpCT9FOqRZk165dvPDCC5SWlhIaGspDDz1EeHi483a73Y7NZqOwsJCf/vSnFBYWUltby8aNG1m9erUu5dlKKAcCyoEoA2JSDkQZEFAORBkQ08VycHqW2K233srgwYP5+c9/zmOPPcaf/vQnNm3aRJ8+fVxes5pSLcSOHTsYMmQI48ePp6ysjLy8PPbv389f/vIXbrrpJry9vYG6kOXk5JCUlER1dTVffvkl/fv3d/NHII1BORBQDkQZEJNyIMqAgHIgyoCYGpoDgMmTJzNy5EjKysp4+umn+eqrr0hKSnJP4YY0ew6Hw7j99tuNadOmOd8uKysz7rnnHsPHx8d48803Dbvd7rx/ZWWlcc899xj+/v7G1q1b3VW2NDLlQAxDORBlQEzKgSgDYhjKgSgDYrrUHEyZMsXw9fU1fH19jfXr17urbMMwDMPDPa0wuRQWi4Xi4mKio6MBc3Bd+/btee211/D29mbevHn06tWLq666CofDgaenJ3v27OHzzz8nLi7OzdVLY1EOBJQDUQbEpByIMiCgHIgyIKZLyUFNTQ1BQUH4+/vzxRdfuD0HOr7XQtx7772sWrWKnTt3OofVeXl5ATBt2jR27NhBeno6vr6+bq5UmpJyIKAciDIgJuVAlAEB5UCUATFdSg42btxIQEAAPXr0cHPVuvpes3e6Zzh37lx8fX2ZN28etbW1eHl5UV1dDcDPfvYzSktL2bVr11mPk9ZBORBQDkQZEJNyIMqAgHIgyoCYLiUHO3fuBCAhIaFZNKRATalmz2KxANC3b19mzZpFeno6Dz/8MDU1Nc6uZ3h4ODabDbvdftbjpHVQDgSUA1EGxKQciDIgoByIMiCmS8mBw+FwZ6nnpJlSLcDpbXf33XcftbW1/Pvf/2batGm8+uqrnDx5krfeegubzeY8Pyqtk3IgoByIMiAm5UCUAQHlQJQBMbXkHKgp1czZ7Xa8vLzYv38/X3zxBY8++ijdunXjueeeo3v37nTt2pWTJ0+ydOlSwsPD3V2uNBHlQEA5EGVATMqBKAMCyoEoA2Jq6TnQoPNmzOFwYLVaOXjwIFdffTXjx4/n1Vdfdd6+cuVKOnToQHh4OFFRUW6sVJqSciCgHIgyICblQJQBAeVAlAExtYYcqCnVDOzcuZNNmzYxc+bMs247evQoQ4cO5brrruOVV17BYrFgGIbOAbdCyoGAciDKgJiUA1EGBJQDUQbE1JpzoON7brZnzx4GDRpEeXk5RUVFzJs3r97thmHw8MMPc9dddzlD1VLCJQ2nHAgoB6IMiEk5EGVAQDkQZUBMrT0H2inlRsXFxcybN4/q6mpiY2P5v//7P55//nnmz58PmGdDbTabm6uUpqYcCCgHogyISTkQZUBAORBlQExtIQfaKeVGpaWldOrUiWuuuYYbb7wRf39/fv7znwMwf/58rFarmysUV1AOBJQDUQbEpByIMiCgHIgyIKY2kQND3OrAgQPOP5eXlxu/+93vDIvFYvz5z392rtfU1BhHjx51R3niIsqBGIZyIMqAmJQDUQbEMJQDUQbE1NpzoJ1SLuZwODAMw7nFrkuXLs4hZO3atWP+/PkYhlGv+/nggw8SEBDAE088gZeXlzvLl0aiHAgoB6IMiEk5EGVAQDkQZUBMbS4HLmp+iWEY27dvN2699VbjuuuuM+69917jo48+ct5WU1Pj/HNFRYXxu9/9zvDy8jKGDBliWCwWIyMjwx0lSxNQDsQwlANRBsSkHIgyIIahHIgyIKa2mAMNOneRXbt2MWTIEMaOHUvXrl359NNP8fT05JprruHZZ58FoLa2Fg8Pc/NacXExo0eP5sCBA3z55Zf069fPneVLI1EOBJQDUQbEpByIMiCgHIgyIKY2mwN3d8XaAofDYTz22GNGSkqKc62kpMT49a9/bcTHxxt33323c91utxt2u9146KGHDIvFYmzZssUdJUsTUA7EMJQDUQbEpByIMiCGoRyIMiCmtpyDVjCqvfmzWCzk5uaSn5/vXPP39+dnP/sZs2fPZuPGjTzzzDMAWK1Wjh49isPhYOPGjS232ylnUQ4ElANRBsSkHIgyIKAciDIgpracAzWlmphx6nRkYmIidrudXbt2OW/z9/fnjjvuICEhgWXLllFaWgpAWFgYTz/9NAMGDHBLzdL4lAMB5UCUATEpB6IMCCgHogyIqc3nwG17tNqYvXv3Gh07djTuuOMOo7S01DAMc4ueYRjGoUOHDIvFYnz66afuLFFcQDkQw1AORBkQk3IgyoAYhnIgyoCY2moOPNzdFGsrevToQWpqKmPHjsXX15df/epXdOzYEQBPT0/69+9PYGCgm6uUpqYcCCgHogyISTkQZUBAORBlQExtNQdqSrnQqFGjWLx4MdOnTycvL4+UlBT69+/Pm2++SWFhITExMe4uUVxAORBQDkQZEJNyIMqAgHIgyoCY2mIOLIZx6gCjuExGRgYPPPAABw4cwMPDA5vNxrvvvktCQoK7SxMXUg4ElANRBsSkHIgyIKAciDIgpraUAzWl3KSkpISioiJKS0uJjIx0bsuTtkU5EFAORBkQk3IgyoCAciDKgJjaSg7UlBIREREREREREZezursAERERERERERFpe9SUEhERERERERERl1NTSkREREREREREXE5NKRERERERERERcTk1pURERERERERExOXUlBIREREREREREZdTU0pERERERERERFxOTSkREREREREREXE5NaVERERELtPIkSO5//77nW937dqV55577oKPsVgsfPDBB5f9Pn/84x8zefLky368iIiISHPh4e4CRERERFxtwoQJ1NTUkJaWdtZtX3/9NcOHD2fz5s3079//kp53/fr1tG/f/rLrslgsF7x9wYIFPP/88xiGcdnvQ0RERKS5UFNKRERE2pw777yTqVOnkpOTQ3R0dL3b/v73v5OUlHTJDSmA0NDQH1RXXl6e88/vvfceTz75JLt27XKu+fn54efn94Peh4iIiEhzoeN7IiIi0uaMHz+e0NBQ/vGPf9RbLysrY/Hixdx5550cO3aMWbNm0alTJ9q1a0e/fv145513Lvi83z++t2fPHoYPH46Pjw+xsbGsWLHigo+PiIhw/hcYGIjFYqm35ufnd9bxvZEjRzJ//nzuv/9+OnToQHh4OG+88Qbl5eXcfvvt+Pv707NnTz799NN672vbtm2MHTsWPz8/wsPDmTNnDkePHm3Q35+IiIhIY1BTSkRERNocDw8PbrvtNv7xj3/UOwq3ePFi7HY7s2bNorKykoEDB/Lxxx+zbds27rnnHubMmcO6desa9D4cDgdTpkzBy8uLtWvX8uqrr/LII480ycfzz3/+k44dO7Ju3Trmz5/P3LlzmT59OsOGDSMjI4MbbriBOXPmcPLkSQBOnDjB6NGjSUhIID09nbS0NAoKCkhJSWmS+kRERETORU0pERERaZPuuOMO9u3bx3//+1/n2t///nemTp1KYGAgnTp14n/+53+Ij4+ne/fuzJ8/n+TkZFJTUxv0/P/5z3/YuXMnb775JgMGDGD48OE8/fTTTfKxDBgwgMcff5xevXrx6KOP4uPjQ8eOHbn77rvp1asXTz75JMeOHWPLli0AvPjiiyQkJPD000/Tp08fEhIS+Nvf/saqVavYvXt3k9QoIiIi8n1qSomIiEib1KdPH4YNG8bf/vY3APbu3cvXX3/NnXfeCYDdbuf//u//6NevH8HBwfj5+fHZZ59x6NChBj3/jh07iImJISoqyrk2dOjQxv9AoN78K5vNRkhICP369XOuhYeHA1BYWAjA5s2bWbVqlXNGlZ+fH3369AFg3759TVKjiIiIyPdp0LmIiIi0WXfeeSfz58/npZde4u9//zs9evRgxIgRAPz+97/n+eef57nnnqNfv360b9+e+++/n+rqajdXfTZPT896b1sslnprp6/q53A4AHN21oQJE3jmmWfOeq7IyMgmrFRERESkjppSIiIi0malpKTw85//nLfffps333yTuXPnOhs4a9asYdKkScyePRswGzq7d+8mNja2Qc/dt29fsrOzycvLczZ6vvvuu6b5QC5RYmIiS5YsoWvXrnh46MdBERERcQ8d3xMREZE2y8/PjxkzZvDoo4+Sl5fHj3/8Y+dtvXr1YsWKFXzzzTfs2LGDn/zkJxQUFDT4uceMGUPv3r350Y9+xObNm/n666/55S9/2QQfxaX76U9/SlFREbNmzWL9+vXs27ePzz77jNtvvx273e7u8kRERKSNUFNKRERE2rQ777yT48ePc+ONN9ab//T444+TmJjIjTfeyMiRI4mIiGDy5MkNfl6r1crSpUupqKhg8ODB3HXXXTz11FNN8BFcuqioKNasWYPdbueGG26gX79+3H///QQFBWG16sdDERERcQ2LceZ1kEVERERERERERFxAvwoTERERERERERGXU1NKRERERERERERcTk0pERERERERERFxOTWlRERERERERETE5dSUEhERERERERERl1NTSkREREREREREXE5NKRERERERERERcTk1pURERERERERExOXUlBIREREREREREZdTU0pERERERERERFxOTSkREREREREREXE5NaVERERERERERMTl/j9CH1rt0Z9N3QAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"plt.figure(figsize=(12, 6))\n",
"\n",
"for known_time, data in df_all.groupby(level='known_time'):\n",
" plt.plot(data.index.get_level_values('valid_time'), data['value'].values, marker='o', label=f'Forecast at {known_time.strftime(\"%H:%M\")}')\n",
"\n",
"plt.xlabel('Valid Time')\n",
"plt.ylabel('Wind Power (MW)')\n",
"plt.title('Forecast Revisions')\n",
"plt.legend()\n",
"plt.grid(True, alpha=0.3)\n",
"plt.xticks(rotation=45)\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "9255eff2",
"metadata": {},
"source": [
"## Summary\n",
"\n",
"You've learned the basics of TimeDB:\n",
"\n",
"1. **Create series** - Define your time series with name, unit, labels, and `overlapping=True` for versioned data\n",
"2. **Insert data** - Store forecasts with `known_time` using `insert()`\n",
"3. **Read latest** - Get the most recent forecast for each time point using `read()`\n",
"4. **Read revisions** - Access all forecast versions using `read(versions=True)` to analyze changes\n",
"\n",
"### Key Concepts\n",
"\n",
"- **`valid_time`**: The time period being forecasted\n",
"- **`known_time`**: When the forecast was made\n",
"- **`overlapping`**: `False` (default) for immutable facts, `True` for versioned forecasts\n",
"- **Series Collection**: Use `.series().where()` to filter by name and labels\n",
"- **Forecast Revisions**: Multiple forecasts for the same `valid_time` with different `known_time`\n",
"\n",
"### Next Steps\n",
"\n",
"- Check out `nb_03_forecast_revisions.ipynb` for more detailed examples\n",
"- Explore other notebooks for advanced features"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "timedb",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.14.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}